개의 생애 단계에 따른 영양소 이용성을 이해하는 것은 건강, 발달, 그리고 수명 증진을 위해 중요하다. 특히 자견 시기에는 생리적으로 요구되는 영양소의 결핍이나 과잉 없이 최적의 영양 균형을 유지하는 것이 중요하며, 이 시기의 영양 불균형은 장기적으로 개의 건강에 부정적인 영향을 미칠 수 있다. 이유 후 초기 급성장 단계(12~24주령)의 자견과 성견의 소화율에 대한 연구는 많이 수행되었으나, 자견 성장 후기 단계의 소화율에 초점을 맞춘 연구는 제한적이다. 따라서 본 연구는 비글의 성장 후기 단계를 대표하는 30주령과 42주령에서 주요 영양소와 아미노산의 외관상전장소 화율(apparent total tract digestibility, ATTD)을 비교하였다. 비글 8마리를 대상으로 AAFCO에서 제시한 영양소 요구량을 충족하도록 설계된 사료를 통제된 환경에서 2주간 급여하였으며, 전분채취법을 이용하여 소화율을 평가하였다. 성장률(GR)은 30주에 비해 42주령에서 유의미하게 감소하여 체중 증가 속도가 둔화되는 경향이 확인되었다. 주요 영양소 소화율 분석 결과, 조지방 소화율은 30주령에서 99.01 ± 0.10%에서 42주령에서 97.62 ± 0.15%로 통계적으로 유의미하게 감소하였다(p < 0.001). 또한, 건물 소화율 또한 조지방 소화율과 함께 주령 증가에 따라 유의미하게 감소하는 결과를 보였다(p < 0.05). 반면, 히스티딘 소화율은 30주령의 93.55 ± 0.46%에서 42주령의 94.83 ± 0.24%로, 라이신 소화율은 94.60 ± 0.24%에서 95.19 ± 0.19%로, 아르기닌 소화율은 95.78 ± 0.30%에서 96.43 ± 0.21%로 증가하였다(p < 0.05). 본 연구는 비글의 성장 후기 단계에서 성장률과 조지방 흡수가 감소한 반면, 특정 아미노산의 소화율이 개선되었음을 보여준다. 이러한 결과는 비글의 성장 후기 단계에서도 영양소 이용성이 변화할 수 있음을 시사하며, 성장 단계에 따라 정밀한 영양 관리의 중요성을 강조한다.
This study was conducted to evaluate the germination rate, chemical composition, and in vitro digestibility of sprouted barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) sprouts depending on cultivar and growth duration. Four cultivars Keunalbori1ho, Saekeumkang, Arijinheuk, and Jokyoung were tested under hydroponic and nutrient solution conditions. The germination rate was significantly higher under hydroponic conditions compared to nutrient solution treatment. Sprouts were harvested at 0, 4, 6, and 8 days for subsequent analysis. Chemical compositions, such as dry matter (DM), crude protein (CP), ether extract (EE), and crude ash (CA), were analyzed following AOAC (2005) protocols, while neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents were determined according to the method of Van Soest et al. (1991). In vitro digestibility was assessed by incubating ground samples with rumen buffer in DaisyII incubators for 48 h. At day 6 of growth, Keunalbori1ho showed the highest NDF and ADF concentrations (48.6% and 26.2%), reflecting its high structural fiber and the lowest digestibility (IVDMD 52.2%, IVNDFD 37.2%). However, it maintained consistent nutritional characteristics across all growth stages, suggesting potential as a stable forage source. In contrast, Saekeumkang exhibited the highest IVNDFD (59.1%) along with relatively low NDF (30.5%) and ADF (16.7%) values (p<0.05), indicating superior digestibility likely attributed to a simpler cell wall structure and higher NFC availability. Notably, digestibility sharply declined by day 8, implying that the optimal harvest window lies around day 6. Therefore, this study suggests that the cultivars Keunalbori1ho and Saekeumkang possess complementary strengths in terms of chemical composition and digestibility, underscoring the importance of optimizing cultivar selection and harvest timing to enhance the potential of cereal sprouts as high quality forage.
This study was attempted to solve the problem that the current training is not consistent with the actual working environment of the fishing vessel, even though the advanced fire extinguishing training for international fishing vessels is mandatory. As a result of the survey, the lack of timely use of fire extinguishing equipment and the difficulty of organizing the fire extinguishing organization were found, and the main problems were analyzed as low understanding of fixed fire extinguishing facilities, low awareness of fire-related laws and regulations, and inefficiency of fire extinguishing training. It was found that the current Seafarers Act does not clearly define the roles and responsibilities of advanced fire extinguishers, and lacks specific standards for designated educational institutions, so there is a problem that the accuracy and reliability of the training contents with the STCW-F Convention and STCW Convention are inconsistent. In addition, it has been confirmed that the fire extinguishing organization, internal communication, and fire extinguishing training in ships, as stipulated in international agreements, are not properly reflected in the domestic curriculum. In particular, the current training consists of general contents that do not take into account the characteristics of fishing vessels, so there is a lack of practical emergency response fire extinguishing training manuals. Therefore, this study proposes the development of customized training content for fishing vessels considering the special working environment and risk factors of fishing vessels based on international agreements, and emphasizes the need for policy support, such as strengthening participation of fishing vessels in education and training, and establishing a legal basis for the operation of emergency fire extinguishing organizations.
In this study, fire extinguisher system to which form fire extinguisher agents were adopted was applied to the combat vehicle crew room to apply fire extinguishing performance and acid gas safety that meet the national defense standards. As a result of evaluation and verification, the following conclusions were drawn. For standard fire sizes in the combat vehicle crew's standard model, we ignited using a mixture of Novec 1230 and Halon 1301 form extinguisher agent and released form extinguisher agent after 30 seconds to determine the fire extinguishing time. The amount of acid gas generated met the criteria in all cases. When the fire size was increased to 0.12m2 and a 2.0mm nozzle was used, all of the extinguishing time, the amount of acid gas generated, and the concentration of Novec 1230 met the criteria. Despite the more difficult conditions to extinguish the fire by making the fire larger, it was possible to confirm the extinguishing performance of the Novec 1230 form extinguisher agent and its safety against acid gas.
본 연구에서는 유기계 산화 방지제인 가려진 페놀이 그래프팅된 산화 그래핀(hindered phenol-grafted graphene oxide, HP-GO)을 합성하였고, 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조하여 고분자 전해질 막 연료전지에 응용하 였다. HP-GO는 3,5-디-tert-뷰틸-4-히드록시페닐프로피오닐 클로라이드에 존재하는 염화 카보닐기(carbonyl chloride)와 GO에 존재하는 히드록시간의 치환 반응을 통해 합성되었으며, 합성된 HP-GO를 고분자 기지체 대비 0.01~0.5 wt%까지 포함하는 복합 막을 제조하여 순수 Nafion과의 물성 차이를 비교하였다. 특정 함량의 HP-GO가 첨가된 복합 막은 순수 Nafion에 비해 우수한 인장강도와 수분 흡수율 및 치수안정성을 나타내었다. 특히 HP-GO의 산화 방지 특성으로 인해 HP-GO가 첨가된 복 합 막은 장시간의 펜톤 평가(Fenton’s test) 이후 순수 Nafion 대비 높은 산화 안정성을 나타내었다. 또한 HP-GO에 의한 향상 된 수분 흡수율에 의해 복합 막은 전 습도 구간에서 순수 Nafion 대비 우수한 수소 이온 전도도를 나타내었다.
This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 μm. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 μm. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.
PURPOSES : Carbon dioxide (CO2) is a cheaper and easier to installer fire suppressant than other extinguishing gases and is easy to install, but extinguishes fires by is suffocation. As a result, suffocation accidents continue to occur in facilities equipped with CO2 fire-extinguishing facilities, Emission standards have yet to be established. This study aims to address the issue. METHODS : To effectively remove CO2 emitted from installed systems, we reviewed and analyzed previous related research and existing international standards. RESULTS : In protected areas where CO2 fire-extinguishing systems are installed, emission facilities should discharge the emitted CO2 before it enters the protected spaces. CO2 sensors can determine whether safe entry is possible or whether respirators are required. CONCLUSIONS : This study presented a specific installation method for emission facilities capable of actively discharging CO2. Applying this method is expected to contribute to improving safety in facilities equipped with CO2 fire-extinguishing facilities.
본 실험에서는 외인성 효소 첨가제 및 혼합 세균 배양을 통한 고상발효(Solid-state fermentation, SSF)가 채종박(Rapeseed meal, RSM)의 체외건물소화율(In vitro dry matter digestibility, IVDMD) 및 단쇄지방산(Short chain fatty acid) 생성에 미치는 영향을 조사하기 위해 수행되었다. 외인성 효소 칵테일(첨가 및 미첨가) 및 RSM에 대한 SSF(발효 및 비발효)를 나타내는 2 x 2 요인 설계가 적용되었다. 3-step 돼지 소화율 모델을 적용하여 채종박의 건물 소화율을 분석하였으며, 72시간 대장발효 후 상층액을 수집하여 단쇄지방산 생성량을 분석한 후 칼로리 단위로 변환하여 가소화에너지 소화율을 분석하였다. 소장 (IVDMDh) 및 전장 (IVDMDt) 건물소화율에서는 고상발효된 채종박이 더 높게 나타났다 (각각 p < 0.01). 마찬가지로, 외인성 효소 첨가제 처리구에서 채종박의 소장 소화율(IVDMDh)이 증가하는 경향을 나타냈다(p = 0.06). Acetic acid 및 butyric acid의 생산은 대조구에 비해 고상발효 처리 시 유의하게 더 생산되었으며 (각각 p < 0.01), 이는 총 단쇄지방산의 생산 증가 경향을 나타냈다(p = 0.09). 에너지 소화율에서는 채종박의 고상발효 및 외인성 효소제 첨가가 유의적으로 높게 나타났다 ( p < 0.01). 그러므로 채종박의 고상발효 처리는 단백질 이용성을 비롯한 영양적 가치를 향상시키는데 효과적이라고 사료된다.
본 연구에서는 산화 방지 특성이 있는 가리워진 아민기를 함유한 산화 그래핀(hindered amine grafted graphene oxide, HA-GO)을 합성하여 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조한 후 고분자 전해질 막 연료전지 시스템에 응용하였다. HA-GO는 4-아미노-2, 2, 6, 6-테트라메틸-4-피페리딘(4-amino-2, 2, 6, 6-tetramethyl piperidine)에 존재하는 아민 기와 GO 표면에 존재하는 에폭시기의 개환 반응을 통해 제조하였으며, 합성된 HA-GO의 함량을 달리한 복합 막을 제조하여 순수 Nafion 막과 성능 특성을 비교하였다. HA-GO가 첨가된 복합 막은 Nafion 단일 막에 비해 기계적 물성, 화학적 안정성 및 수소이온 전도 특성이 향상되었다. 특히 HA-GO의 산화 방지 특성으로 인해 HA-GO가 첨가된 복합 막은 펜톤 평가 (Fenton’s test) 이후 수소이온 전도도의 유지 특성이 Nafion 단일 막에 비해 큰 폭으로 향상된 것을 확인할 수 있었다.
Combat-armored vehicles were equipped with an automatic-fire-extinguishing system to ensure the safety of the crew and vehicle from fires on the vehicle. When a fire was occurred, the automatic-fire-extinguishing system automatically detects the fire through sensors and detection lines, sprays a fire extinguisher, and notifies the crew visually and audibly. Recently, there had been cases of automatic-fire-extinguishing systems malfunction on combat-armored vehicles. In this study, in order to resolve the automatic-fire-extinguisher's malfunction phenomenon, ground noise and inter-circuit noise generated from the fire detection line were identified, and the resistance connected on the circuit was revised to remove noise. As a result of resistance revision, the noises was eliminated and the electromotive force difference between input circuits was made constant, thereby improving the malfunction of the automatic-fire-extinguishing system. By applying the result, it was confirmed that the control device sensed a temperature similar to the actual temperature on actual vehicles, and it was confirmed that the automatic-fire-extinguishing system's malfunction phenomenon was not founded in the field vehicles after then.
Changes in contents of free sugars, amino acids, and fatty acids of legumes were analyzed for each phase of in vitro digestion. In addition, contents of resistant starch in raw and digested pulses were compared. Soybeans, kidney beans, cowpeas, and chickpeas were analyzed. An in vitro digestion model was used to analyze contents of nutrients using LC-MS and GC-MS. Stachyose in kidneybean, cowpea, and chickpea increased as the digestion phase progressed. In four types of legumes, raffinose slightly decreased or showed no significant difference between the Oral phase and the BBMV phase. Content of glucose, a monosaccharide, increased during the BBMV phase. During the digestion phase, levels of free amino acids and free fatty acids also increased. Content of resistant starch was reduced compared to that in the raw material. It was 0.01g/100 g food in soybean, 1.06 g/100 g food in red kidney bean, 0.77g/ 100g food in cowpea, and 0.76 g/100 g food in chickpea. It was confirmed that nutrients in the in vitro digestion model were liberated at each digestion phase with changes in the content of resistant starch. These results are expected to be used as fundamental data for obtaining bioavailability of nutrients.