논문 상세보기

로봇 사진사를 위한 오메가 형상 추적기와 얼굴 검출기 융합을 이용한 강인한 머리 추적 KCI 등재

Robust Head Tracking using a Hybrid of Omega Shape Tracker and Face Detector for Robot Photographer

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/1097
서비스가 종료되어 열람이 제한될 수 있습니다.
로봇학회논문지 (The Journal of Korea Robotics Society)
한국로봇학회 (Korea Robotics Society)
초록

Finding a head of a person in a scene is very important for taking a well composed picture by a robot photographer because it depends on the position of the head. So in this paper, we propose a robust head tracking algorithm using a hybrid of an omega shape tracker and local binary pattern (LBP) AdaBoost face detector for the robot photographer to take a fine picture automatically. Face detection algorithms have good performance in terms of finding frontal faces, but it is not the same for rotated faces. In addition, when the face is occluded by a hat or hands, it has a hard time finding the face. In order to solve this problem, the omega shape tracker based on active shape model (ASM) is presented. The omega shape tracker is robust to occlusion and illumination change. However, when the environment is dynamic, such as when people move fast and when there is a complex background, its performance is unsatisfactory. Therefore, a method combining the face detection algorithm and the omega shape tracker by probabilistic method using histograms of oriented gradient (HOG) descriptor is proposed in this paper, in order to robustly find human head. A robot photographer was also implemented to abide by the 'rule of thirds' and to take photos when people smile.

저자
  • 김지성 | Ji Sung Kim
  • 정지훈 | Ji Hoon Joung
  • 안광호 | An Kwang Ho
  • 유연걸 | Yeon Geol Ryu
  • 이원형 | Won Hyung Lee
  • 정명진 | Chung Myung Jin