난소 절제 흰쥐의 뇌와 부신에서의 Catecholamine Biosynthesizing Enzyme들의 전사에 미치는 Estrogen의 효과
포유동물에서 뇌와 부신에서 합성ㆍ분비되는 카테콜아민(Catecholamine, CA)계 신경전달물질인 dopamine(DA), norepinephrine(NE), epinephrine(E)은 체내 각종 생리현상의 조절에 필수적이며, 생식과 관련된 기능으로는 시상하부와 뇌하수체 사이의 GnRH-gonadotropin 호르몬 축의 활성을 조절함 외에도 번식과 연관된 여러 행동양식을 조절함이 잘 알려져 있다. 본 연구는 카테콜아민 생합성 효소인 tyrosin
Dopamine(DA), norepinephrine(NE), and epinephrine(E) belong to a class of neurotransmitters known as catecholamine (CA) which are synthesized and secreted by mammalian brain and adrenal medulla. CA regulate several behavior patterns connected with breeding, and regulate GnRH-gonadotropin hormone axis' vitality between hypothalamus-pituitary gland linking with reproduction freeze. The present study examined effects of sex steroid hormone on the transcriptional activities of CA biosynthesis enzymes, tyrosine hydroxylase(TH), dopamine -hydroxylase(DBH), and phenylethaolamine-N-methyl transferase(PNMT). Mature female rats were ovariectomized(OVX) and implanted with 17 -estradiol(E: 500 /ml) or sesame oil. Forty-eight hours after implantation all the animals were sacrificed. Total RNAs were extracted immediately and were applied to semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR). The expression level of TH was appeared by hypothalamus > SNc> adrenal medulla orders in OVX+Oil group, and by SNc > hypothalamus) adrenal medulla orders in OVX+E group. Treatment with E significantly increased TH expression in SNc and adrenal medulla but in hypothalamus, the reduced TH expression was observed. The expression level of DBH was appeared by adrenal medulla > SNc > hypothalamus orders in OVX+Oil group and in OVX+E group. Administration of E significantly reduced DBH expression in SNc, and increased in adrenal medulla. Two cDNA products, large(PNMT1) and small(PMNTs) species of 110bp difference, were amplified in SNc and hypothalamus, but only PNMTs was observed in adenal medulla. The PNMTs expression level was in the order of adrenal medulla > hypothalamus > SNc in both OVX+Oil and OVX+E group. The PNMTs expression in SNc and adrenal medulla was significantly increased byE. The present report demonstrated that estrogen effects on transcriptional activities for CA biosynthethic enzymes were tissue specific in adrenal medulla as well as different region of brain. These results suggest that it might be crucial relationship between the type of estrogen receptor and CA enzyme gene expression.