In this paper, a three dimensional numerical analysis tool was applied to study the PEMFC performance characteristics. The porosity and electrical conductivity of GDL and CL as well as the relative humidity of anode and cathode channel gas were selected as simulation parameters. The porosity of GDL and CL was varied as 0.3, 0.5, and 0.7. The relative humidity of anode and cathode was varied as 0, 20, 40, 60, 80, and 100 percent. The electrical conductivity of GDL and CL was varied as 1, 5, 10, 50, 102, and 104 1/Ω·m. For a constant cell voltage condition, the maximum current density was obtained at GDL porosity of 0.7, anode relative humidity of 100 percent, cathode relative humidity of 60 percent, and electrical conductivity of 104 1/Ω·m for GDL and CL. As the porosity of GDL and CL increases, current density increases because reactant gases diffuse well. As the electrical conductivity of GDL and CL increases, current density increases due to increased electron transfer rate. As anode relative humidity increases, current density increases. Unlike anode, current density increases when cathode relative humidity increases from 0 percent to 60 percent. Then current density decreases when cathode relative humidity increases from 60 percent to 100 percent.