The vehicle routing problem determines each vehicle routes to find the transportation costs, subject to meeting the customer demands of all delivery points in geography. Vehicle routing problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a tabu search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems. And computational experiments on these instances show that the proposed heuristic yields better results than the simple tabu search does.