Workers are avoiding production/manufacturing sites due to the poor working environment and concern over safety. Small and medium-sized businesses introduce new equipment to secure safety in the production site or ensure effective process management by introducing the real-time monitoring technique for existing equipment. The importance of real-time monitoring of equipment and process in the production site can also be found in the ANSI/ISA-195 model. Note, however, that most production sites still use paper-based work slip as a process management technique. Data reliability may deteriorate because information on the present condition of the production site cannot be collected/analyzed properly due to manual data writing by the worker. This paper introduces the monitoring and process management technique based on a direct facility interface to secure safety in the field by improving the poor working environment and enhance there liability and real-time characteristics of the production data. Since the data is collected from equipment in real-time directly through the SIB-based interface and PLC-based interface, problems associated with workers’ manual data input are expected to be solved; safety can also be improved by enhancing workers’ attention to work by minimizing workers’ injuries and disruption.
As information-oriented industry has been developed and electronic devices has come to be smaller, lighter, multifunctional, and high speed, the components used to the devices need to be much high density and should have find pattern due to high integration. Also, diverse reliability problems happen as user environment is getting harsher. For this reasons, establishing and securing products and components reliability comes to key factor in company's competitiveness. It makes accelerated test important to check product reliability in fast way. Out of fine pattern failure modes, failure of Electrochemical Migration(ECM) is kind of degradation of insulation resistance by electro-chemical reaction, which it comes to be accelerated by biased voltage in high temperature and high humidity environment. In this thesis, the accelerated life test for failure caused by ECM on fine pattern substrate, 20/20μm pattern width/space applied by Semi Additive Process, was performed, and through this test, the investigation of failure mechanism and the life-time prediction evaluation under actual user environment was implemented. The result of accelerated test has been compared and estimated with life distribution and life stress relatively by using Minitab software and its acceleration rate was also tested. Through estimated weibull distribution, B10 life has been estimated under 95% confidence level of failure data happened in each test conditions. And the life in actual usage environment has been predicted by using generalized Eyring model considering temperature and humidity by developing Arrhenius reaction rate theory, and acceleration factors by test conditions have been calculated.
Many countries are enforcing the Product Liability Act to ask the responsibility for the supply of the safe products. Thus, the safety of the product becomes one of the most important elements in modern corporate management. Diamond tool industries producing risk-high products cannot make an except to this situation. This research presents how Diamond tool manufactures in korea to respond effectively to Product Liability through construction of Product Safety Management System.
In accordance with the trend for cooperation of related company, BOM (Bill of Materials) has become an important factor in the manufacturing of production. BOM manages a various basic information of design, production, and process and so on. Especially, automobile industries are related to many company, they build a cooperative system from the communication of information. In this study, we have analyzed a BOM structure of a well-used automobile part industry and proposed a structure of engineering BOM, manufacturing BOM, process BOM for cooperative environment. A proposed various BOM structure are flexible in responding to the situation of structure alternations for automobile part. And also they include in environment factors. It is expected that these BOM structure will be used to basic template in automobile part industry which could be loaded with cooperative hub-system.
The reliability prediction and evaluation for general electronic components are required to guarantee in quality and in efficiency. Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. In this study reliability prediction of electronic components, that is the interface card, which is used in the CNC(Computerized Numerical Controller) of machine tools, was carried out using PRISM reliability prediction specification. Reliability performances such as MTBF(Mean Time Between Failure), failure rate and reliability were obtained, and the variation of failure rate for electronic components according to temperature change was predicted. The results obtained from this study are useful information to consider a counter plan for weak components before they are used.
The vehicle routing problem determines each vehicle routes to find the transportation costs, subject to meeting the customer demands of all delivery points in geography. Vehicle routing problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a tabu search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems. And computational experiments on these instances show that the proposed heuristic yields better results than the simple tabu search does.
Intelligent machines respond to external environments on the basis of decisions that are made by sensing the changes in the environment and analyzing the obtained information. This study focuses on the construction of a knowledge base which enables decision making with that information. Approximately 70% of all errors that occur in machine tools are caused by thermal error. In order to proactive deal with these errors, a system which measures the temperature of each part and predicts and compensates the displacement of each axis has been developed. The system was built in an open type controller to enable machine tools to measure temperature changes and compensate the displacement. The construction of a machining knowledge base is important for the implementation of intelligent machine tools, and is expected to be applicable to the network based intelligent machine tools which look set to appear sooner or later.
신뢰성이란 단기간에 측정되는 성능과는 다른 지표로서 흔히 장기간에 걸쳐 평가되는 품질의 척도이다. Oil Cooler는 공작기계(machine tools)의 주축 및 구동부 등에서 발생하는 열 변형을 제어하는 장치로서 공작기계의 신뢰성 향상을 위해서는 oil cooler의 신뢰성 개선이 이루어져야 한다. 본 연구에서는 oil cooler의 신뢰성 개선을 위해 고장률 데이터베이스를 이용한 신뢰성 예측과 이를 통한 취약부품 분석을 실시하고 신뢰성 시험기를
Vehicle routing problem with time windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic vehicle routing problem. Vechicle rout
In order to implement Artificial Intelligence, various technologies have been widely used. Artificial Intelligence are applied for many industrial products and machine tools are the center of manufacturing devices in intelligent manufacturing devices. T
Vehicle routing problem with Time Windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic Vehicle routing problem. Vechicle routing problem with Time Windows is known to be NP-Hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a Tabu Search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems.
In order to implement Artificial Intelligence, various technologies have been widely used. Artificial Intelligence are applied for many industrial products and machine tools are the center of manufacturing devices in intelligent manufacturing devices. The purpose of this paper is to present the design of Decision Support Agent that is applicable to machine tools. This system is that decision whether to act in accordance with machine status is support system. It communicates with other active agents such as sensory and dialogue agent. The proposed design of decision support agent facilitates the effective operation and control of machine tools and provides a systematic way to integrate the expert's knowledge that will implement Intelligent Machine Tools.
This paper studies on the quality problem for the Reley using the 6 sigma process. The application of 6 sigma process suggested reliable and valuable statistical data for the quality of the Relay at the production line. In the measurement step in 6 sigma process, the FMEA(filure mode effect analysis) were used for the detection of problem source. The application of 6 sigma process gave the improving method for the quality of the Relay. Consequently the 6 sigma process was proved very effective for the quality problem reducing at the production line.
Recently, the reliability are applied for many industrial products, and many products are required to guarantee in quality and in performance. The purpose of this paper is to present some of reliability prediction methodologies using failure rate database
The objective of this paper is to develop the efficient heuristic method for solving the minimum makespan problem of the job shop scheduling. The proposed heuristic method is based on a constraint satisfaction problem technique and a improved randomizing search algorithm. In this paper, ILOG programming libraries are used to embody the job shop model, and a constraint satisfaction problem technique is developed for this model to generate the initial solution. Then, a improved randomizing search algorithm is employed to overcome the increased search time of constrained satisfaction problem technique on the increased problem size and to find a improved solution. Computational experiments on well known MT and LA problem instances show that this approach yields better results than the other procedures.
Recently, the reliability are applied for many industrial products, and many products are required to guarantee in quality and in performance. The purpose of this paper is to present some of reliability prediction methodologies using failure rate database for machinery parts that are applicable to machine tools. VDI Turret, which is core component of the NC Lathe, was chosen as the target of the reliability prediction. The results of reliability prediction has shown the failure rate, MTBF(Mean Time Between Failure), and reliability of the VDI Turret. It is expected that proposed methodologies will be applicable to prediction of reliability for other components of machine tools.
Manufacturing technologies of compound semiconductor are similar to the process of memory device, but management technology of manufacturing process for compound semiconductor is not enough developed. Semiconductor manufacturing environment also has been
SOC(Social Overhead Capital) projects such as road, power plant, airport or telecommunication facility construction require a large scale of cost, a long period of time and management of a number of sub-contractors. So systematic and efficient management
Manufacturing technologies of compound semiconductor are similar to the process of memory device, but management technology of manufacturing process for compound semiconductor is not enough developed. Semiconductor manufacturing environment also has been emerged as mass customization and open foundry service so integrated manufacturing system is needed. In this study we design the integrated manufacturing system for compound semiconductor fabrication that has monitoring of process, reduction of lead-time, obedience of due-dates and so on. This study presents integrated manufacturing system having database system that based on web and data acquisition system. And we will implement them in the actual compound semiconductor fabrication.