Applying Neuro-fuzzy Reasoning to Go Opening Games
본 논문은 포석 바둑을 위해, 패턴 지식을 근간으로 바둑 용어 지식을 수행할 수 있는 뉴로-퍼지 추론에 대한 실험 결과를 설명하였다. 즉, 포석 시 최선의 착점을 결정하기 위한 뉴로-퍼지 추론 시스템의 구현을 논하였다. 또한 추론 시스템의 성능을 시험하기 위하여 시차 학습(TD(λ) learning) 시스템과의 대결을 벌였다. 대결 결과에 의하면 단순한 뉴로-퍼지 추론 시스템조차 시차 학습 모델과 충분히 대결할 만하며, 뉴로-퍼지 추론 시스템이 실제 바둑 게임에도 적용될 수 있는 잠재력을 보였다.
This paper describes the result of applying neuro-fuzzy reasoning, which conducts Go term knowledge based on pattern knowledge, to the opening game of Go. We discuss the implementation of neuro-fuzzy reasoning for deciding the best next move to proceed through the opening game. We also let neuro-fuzzy reasoning play against TD(λ) learning to test the performance. The experimental result reveals that even the simple neuro-fuzzy reasoning model can compete against TD(λ) learning and it shows great potential to be applied to the real game of Go.