논문 상세보기

항만 경쟁력 평가를 위한 유사도 기반의 이산형 평균 알고리즘 KCI 등재

A Dispersion Mean Algorithm based on Similarity Measure for Evaluation of Port Competitiveness

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/260655
서비스가 종료되어 열람이 제한될 수 있습니다.
Journal of Korean Navigation and Port Reserch (한국항해항만학회지)
한국항해항만학회 (Korean Institute of Navigation and Port Research)
초록

평균법과 클러스터링은 다속성 평가문제에서 널리 쓰이고 있는 중요한 데이터 마이닝 기법들이다. 그러나, 다양한 다속성 평가 문제에서 데이터 마이닝을 할 때, 데이터들의 특징은 그 중요성이 달라질 수 있기 때문에 이러한 데이터의 중요도 차이를 고려해야 할 필요가 있다. 따라서, 이러한 기법들은 데이터의 선택 및 중요도 등과 같이 그 특징을 얼마나 잘 반영하는 지가 중요하다. 게다가, 산술평균법의 경우에는 우선순위 및 가중치로 정의되는 평가구조에서 적합한 결과를 산출하기에는 한계가 있을뿐 만 아니라, 평가자 그룹별 특징을 반영하기 곤란하다. 따라서, 본 연구에서는 기하학적 도형을 바탕으로 유사도를 평가하여, 평가자 그룹별로 특징지어지는 이산적인 환경에서의 평균을 산출하는 알고리즘을 제안하였다. 본 알고리즘의 핵심사항 중 하나는, 항목별 우선순위의 혼돈없이 유사도를 평가할 수 있다는 점이다.

The mean and Clustering are important methods of data mining, which is now widely applied to various multi-attributes problem However, feature weighting and feature selection are important in those methods bemuse features may differ in importance and such differences need to be considered in data mining with various multiful-attributes problem. In addition, in the event of arithmetic mean, which is inadequate to figure out the most fitted result for structure of evaluation with attributes that there are weighted and ranked. Moreover, it is hard to catch hold of a specific character for assume the form of user's group. In this paper. we propose a dispersion mean algorithm for evaluation of similarity measure based on the geometrical figure. In addition, it is applied to mean classified by user's group. One of the key issues to be considered in evaluation of the similarity measure is how to achieve objectiveness that it is not change over an item ranking in evaluation process.

저자
  • 추봉성 | Chw, Bong-Sung
  • 이철영 | Lee, Cheol-Yeong