This paper investigates experimentally the confinement effect on concrete. For this purpose, outside lateral reinforcement members made of stainless steel and GFRP were employed. Then, uniaxial compressive tests on concrete cylinders incorporating the members were conducted. A total of 30 cylinder specimens, specifically, 6 unconfined specimens, 12 specimens confined by stainless steel and 12 specimens confined by GFRP, were fabricated. The failure patterns of both unconfined and confined specimens were assessed and discussed based on experimental results. The results proved that the maximum stress and corresponding strains of the cylinders confined using the proposed hoops are increased in comparison with those of the unconfined. This supports that the current work can be used for retrofitting concrete members and structures and thus may lead to increased stability of such structures.