최근 국지성 집중호우, 돌발홍수와 같은 급격한 기상변화로 인한 피해가 증가함에 따라, 레이더와 위성영상 등 원격탐측 방법을 사용한 강우 예측 및 관측에 대한 관심이 높아지고 있다. 본 연구에서는 자료지향형 모형의 하나인 뉴로-퍼지기법(ANFIS : Adaptive Neuro Fuzzy Inference System)을 사용하여 유역 유출량을 산정하였고, 레이더 단기 강우예측 모형인 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation; Germann et al., 2002, 2004) 강우예측자료를 입력변수의 하나로 사용하였다. 뉴로-퍼지기법 및 레이더 강우예측자료를 사용한 홍수량 산정의 적용성 평가를 위해 충주댐 상류유역의 2010년 및 2011년 홍수기에 발생한 6개의 강우사상을 사용하여 모형 생성 시 사용한 강우자료의 종류에 따른 결과를 비교하고, 입력변수 조합에 따른 15개 모형을 구성하여, 모형 구성과정의 군집화 방법을 변화시키며 이에 따른 결과를 비교 분석하였다. 연구 결과, 기 발생한 홍수사상 중 가장 큰 홍수사상을 사용하여 모형을 생성할 경우 홍수량 산정의 정확도가 높아지는 것으로 나타났고, 모형의 생성이 가능한 범위 안에서 비교적 clustering 반경이 클수록 홍수량 산정의 정확도가 높아지는 것으로 나타났다. 충주댐 유역의 홍수량 예측에서는 t+6~t+16시간의 예측에서 MAPLE 강수예측자료를 사용한 모형의 홍수량 산정 결과의 정확도가 상대적으로 높은 것으로 나타났다.
The interest in rainfall observation and forecasting using remote sensing method like RADAR(Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE(McGill Algorithm for Precipita-tion Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.