검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2004.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 적응신경망퍼지추론시스템(ANFIS)과 회귀분석을 활용하여 7가지 역학적 특성치를 갖는 면직물의 시각적 질감을 해석하고 두 가지 방법을 비교하는 것이다. AMFIS는 퍼지 소속 함수와 신경망 구조를 갖는 것으로 인간의 비선형적 감성예측에 유용한 도구이다. 상관관계 및 회귀 분석의 통계분석은 7가지 역학적 특성치가 주관적 질감과 선형의 관계가 있음을 나타내었지만 설명력이 높지 않았고, 선형 이외의 관련성과 변수들 간의 상호작용을 표현하기 어려운 문제가 있었다. 통계분석과 비교하여, ANFIS는 변수들 간의 비선형적인 관련성과 상호작용을 가시적으로 보여주는데 설명력 있는 유용한 도구였으나, 입력 변수 중 출력 변수에 영향력이 있는 변수를 변별하지 못하여, 생성된 규칙의 수가 복잡한 문제가 있었다. 따라서 ANFIS의 해석이 단순하고 의미있는 모델을 구성하기 위해서는 영향력 있는 출력 변수를 추출하고 나머지 변수를 유사하게 통제하는 실험 모델의 구성이 필요하다.
        4,200원
        2.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법을 개발하고 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역을 선정하였으며, 개선 기법은 ANFIS 기반의 전·후처리기법으로 구성된다. 전처리 기법에서 GloSea5의 앙상블 멤버에 가중치를 부여하며(OWM), 후처리 과정에서는 전처리결과를 편의보정 한다(MOS). 평가결과 편의보정된 GloSea5에 비해 예측성능이 개선되었으며, CASE3, CASE1, CASE2 순으로 모의성능이 우수하였다. 전처리 기법은 강수의 변동성이 큰 계절에 개선효과가 우수하였으며, 후처리 기법은 전처리로 개선하지 못한 오차를 줄일 수 있는 것으로 나타났다. 따라서 본 연구에서 개발한 ANFIS 기반 GloSea5 앙상블 기상전망 개선 기법은 전·후처리 기법을 함께 사용하는 것이 가장 좋으며, 특히 여름철과 같이 강수의 변동성이 큰 계절에 활용성이 높을 것으로 판단된다.
        3.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 ANFIS 기반의 유황별 댐 예측유입량 산정 기법(Flow regime-based ANFIS Dam Inflow Prediction, FADIP)을 개발하고, 이를 단 순 ANFIS 기반 댐 예측유입량 산정 기법(ANFIS Dam Inflow Prediction, ADIP)과 비교 평가하였다. 대상유역은 국내 주요 다목적댐인 충주댐 유역과 소양강댐 유역을 선정하였으며, 입력자료로 댐 유입량, 강수량, 장기기상예보 자료를 사용하였다. 모델의 훈련 및 보정기간으로 충주댐 유역은 1987~2010년, 소양강댐 유역은 1984~2010년을 선정하였다. 검정기간은 두 유역 모두 2011~2016년을 활용하였다. 훈련 및 보정결과 FADIP 는 ADIP에 비해 평수기, 저수기에 훈련이 개선되는 것으로 나타났다. 검정결과 ADIP는 통계모델의 학습방법 특성상 일반적인 사상에 학습이 이루어져, 저수기에 예측성이 떨어지는 것으로 나타났다. 반면 FADIP는 ADIP에 비해 전기간의 정확도가 향상되었으며, 특히 평수기와 저수기에 예측성이 우수하였다. 따라서 FADIP는 다목적댐 이수관리에 활용성이 높을 것으로 판단된다.
        4.
        2016.04 서비스 종료(열람 제한)
        In reinforced concrete (RC) structures, concrete carbonation depth is an important criterion for the deterioration of durability of RC structures. Concrete carbonation is influenced by multiple factors such as chloride attack, crack, concrete compressive strength, etc. However, due to its complex mechanism, most previous studies considered only one or two deterioration factors to estimate the concrete carbonation depth. In this study, therefore, inspection data were collected from 8 buildings, and the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm that estimates the concrete carbonation depth of RC structures has been proposed. The proposed ANFIS model provided good estimations on the carbonation depths.
        5.
        2016.04 서비스 종료(열람 제한)
        In a pretensioned concrete member, the effective prestress is not fully developed in a certain length from the end of the member, which is defined as transfer length. Because of its complex mechanism, previous transfer length models are mostly empirical and provide very different results. In this study, the Adaptive Neuro-Fuzzy Inference System(ANFIS) was introduced to estimate the transfer lengths of pretensioned concrete members. A total of 209 experimental data has been used to train ANFIS, and the trained ANFIS algorithm estimated the transfer lengths of test specimens very accurately.
        6.
        2015.02 서비스 종료(열람 제한)
        Drought prediction is of significance importance for drought disaster risk management and mitigation. The regression based statistical models and physical process based models are commonly used for drought prediction. The statistical models assume stationarity of data which limits their ability to capture highly non-linear patterns of droughts. On the other hand, reliable long-range rainfall forecast is necessary for drought prediction using physical process based models. However, the long-range rainfall prediction especially in the Asian monsoon regions is quite challenging for climate models. In this study, the use of Adaptive Neuro-Fuzzy Inference System (ANFIS) was explored to develop a model for prediction of droughts over the East Asia monsoon region (20oN–50oN,103oE–149oE) by employing Standardized Precipitation Index (SPI) as a drought index. Most of the drought studies in the East Asia have been focused on basin or country scale. In this study, we identified homogeneous rainfall zones in the East Asia monsoon region using cluster analysis methods and analyzed the impact of global Sea Surface Temperature Anomalies (SSTA) on drought in each zone. The ANFIS-based model was developed and evaluated with different configurations to identify optimal model architecture and suitable predictor variables for drought prediction. The performance of the proposed model was assessed by comparison of observed and predicted values of the drought index using different statistical measures.
        7.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        최근 국지성 집중호우, 돌발홍수와 같은 급격한 기상변화로 인한 피해가 증가함에 따라, 레이더와 위성영상 등 원격탐측 방법을 사용한 강우 예측 및 관측에 대한 관심이 높아지고 있다. 본 연구에서는 자료지향형 모형의 하나인 뉴로-퍼지기법(ANFIS : Adaptive Neuro Fuzzy Inference System)을 사용하여 유역 유출량을 산정하였고, 레이더 단기 강우예측 모형인 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation; Germann et al., 2002, 2004) 강우예측자료를 입력변수의 하나로 사용하였다. 뉴로-퍼지기법 및 레이더 강우예측자료를 사용한 홍수량 산정의 적용성 평가를 위해 충주댐 상류유역의 2010년 및 2011년 홍수기에 발생한 6개의 강우사상을 사용하여 모형 생성 시 사용한 강우자료의 종류에 따른 결과를 비교하고, 입력변수 조합에 따른 15개 모형을 구성하여, 모형 구성과정의 군집화 방법을 변화시키며 이에 따른 결과를 비교 분석하였다. 연구 결과, 기 발생한 홍수사상 중 가장 큰 홍수사상을 사용하여 모형을 생성할 경우 홍수량 산정의 정확도가 높아지는 것으로 나타났고, 모형의 생성이 가능한 범위 안에서 비교적 clustering 반경이 클수록 홍수량 산정의 정확도가 높아지는 것으로 나타났다. 충주댐 유역의 홍수량 예측에서는 t+6~t+16시간의 예측에서 MAPLE 강수예측자료를 사용한 모형의 홍수량 산정 결과의 정확도가 상대적으로 높은 것으로 나타났다.
        8.
        1998.12 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 상수도시설을 효율적으로 운영하는 데 필요한 1일 급수량 수요를 예측하는 방식에 대하여 인공지능(Artificial Inteligence)이라 불리는 퍼지 뉴론(fuzzy neuron)을 이용하여 연구하였다. 퍼지뉴론이란 퍼지정보(fuzzy information)를 입력으로 받아들이고 처리하는 퍼지 신경망을 일컫는 말이다. 본 연구에서는 소속함수와 퍼지규칙을 신경망으로 학습하는 기능인 적응식 학습방법을 통하여 1일 급수량을 예측하였으며 연구