Fossil fuel combustion generates large amount of green house gas and it was considered major emission source causingglobal warming. For reducing green house gas, renewable energy resources have been emerged as an alternative energy.Among those resources, waste has been considered major resource as one of renewable energy, but it has been not utilizedsufficiently. In Korea, there are lots of efforts to utilize sewage sludge as one of renewable energy resources due to wasteto energy project of government. In this paper, sewage sludge was utilized as main fuel in order to recover heat energysource using oxy-fuel combustion in 30KWth circulating fluidized bed (CFB) pilot plant. Firstly, basic characteristics ofsewage sludge were analyzed and fuel feed rate was calculated by stoichiometry oxygen demand. For producing 30kwthermal energy in pilot plant, the feeding rate of sewage sludge was calculated as 13kg/hr. In oxy-fuel combustion, oxygeninjection rate was ranged from 21% to 40%. Fluidized material was more suitably circulated in which the rate of U/Umfwas calculated as 8 at 800oC. Secondly, Temperature and pressure gradients in circulation fluidized bed were comparedin case of oxy and air combustion. Temperature gradients was more uniformly depicted in case of 25% oxygen injectionwhen the value of excess oxygen was injected as 1.37. Combustion efficiency was greatest at the condition of 25% oxygeninjection rate. Also, the flue gas temperature was the highest at the condition of 25% oxygen injection rate. Lastly,combustion efficiency was presented in case of oxy and air combustion. Combustion efficiency was increased to 99.39%in case of 25% oxygen injection rate. In flue-gas composition from oxy-fuel combustion, nitrogen oxide was ranged from47ppm to 73ppm, and sulfur dioxide was ranged from 460ppm to 645ppm.