Analysis of Tic-Tac-Toe Game Strategies using Genetic Algorithm
바둑은 단순한 규칙에도 불구하고 매우 복잡한 전략보드 게임이다. 몬테카를로 트리탐색을 이용하여 컴퓨터 바둑 프로그램들이 접바둑으로 프로기사를 제압해 왔다. 몬테카를로 트리탐색은 전략의 개념보다는 몬테카를로 시뮬레이션에 의해 계산된 승률에 근간을 한다. 반면에 적절한 적합도 함수로 된 유전 알고리즘은 게임 내 최적 해를 찾아낼 수 있다. 삼목 게임(또는 ◯x게임)은 가장 대중적인 게임 중의 하나이다. 저자는 삼목 게임에서의 최선의 전략을 찾고자 했다. 실험 결과로 유전 알고리즘은 효율적인 전략들을 찾을 수가 있으며, 바둑과 서양장기와 같은 여타 보드게임들에 적용할 수 있음을 보였다.
Go is an extremely complex strategy board game despite its simple rules. By using MCTS, the computer Go programs with handicap game have been defeated human Go professionals. MCTS is based on the winning rate estimated by MC simulation rather than strategy concept. Meanwhile Genetic algorithm equipped with an adequate fitness function can find out the best solutions in the game. The game of Tic-Tac-Toe, also known as Naughts and Crosses, is one of the most popular games. We tried to find out the best strategy in the game of Tic-Tac-Toe. The experimental result showed that Genetic algorithm enables to find efficient strategies and can be applied to other board games such as Go and chess.