The methods for determining the diffusion parameters for the diffusion of d-limonene, a major volatile compound of orange juice, through a multi-layered food packaging material and predicting its absorption into the packaging material have been investigated. The packaging material used was the 1.5-mm thick multi-layered packaging material composed of high impact polystyrene (HIPS), polyvinylidene chloride (PVDC), and low density polyethylene (LDPE). Orange juice was placed in a cell where volatiles were absorbed in the sample package and kept at 23±2oC for 72 hr. The d-limonene absorbed in a 1.5-mm thick multi-layered food packaging material was analyzed by a solid phase micro-extraction (SPME). The absorption parameters for the absorption of d-limonene in the packaging material were determined and absorption of d-limonene into the packaging material was predicted using absorption storage data. The SPME desorption at 60oC for 1 hr resulted in the most sensitive and reproducible results. The diffusion coefficients of d-limonene in the packaging material and the partition coefficient at 23±2oC were approximately 1-2×10-12m2/s and 0.03, respectively. The absorption profile no earlier than 30 hr was fit well by a model derived from the Fick’s law.