Among 154 putative ORFs of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), ac78 and ac79 are highly conserved genes in baculovirus, but their functions in the virus life cycle have been unknown so far. To determine their roles in AcMNPV replication, knockout mutants, ac78KO and ac79KO, were constructed using the plasmid capture system (PCS). Real-Time PCR analysis showed that both of ac78 and ac79 transcripts were first detected at 6 hours post-infection, and accumulated to maximum at 24 hours post-infection, suggesting that both of ac78 and ac79 are belong to late gene. When the genomic DNA of ac78KO was transfected into Sf9 cells, viral replication was restricted to a single cell infection. These results demonstrated that the ac78 play an important role in BV production, and therefore is essential for AcMNPV to mount a successful infection. Whereas Sf9 cells infected with the ac79KO showed normal viral symptoms such as rounding and swelling, OBs were not observed from majority of infected cells. These results suggested that the ac79 might play an important role in OB production.