검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 119

        6.
        2019.04 구독 인증기관·개인회원 무료
        Here, we investigated antioxidant defense mechanism in the spermatheca of A. mellifera queens via RNA-seq analysis of spermathecae in both mated and virgin queens. We identified the genes encoding antioxidant proteins, which were differentially expressed in the spermatheca of mated queens. The concentrations of antioxidant proteins, such as superoxide dismutase 1 (SOD1), catalase, glutathione peroxidase (GTPX), and transferrin (Tf) together with the levels of ROS, H2O2, and iron were higher in the spermathecal fluid of mated queens as opposed to those in the spermathecal fluid of virgin queens; this indicated that increase in antioxidant protein concentration is an antioxidant defense mechanism occurring in the spermathecal fluid of mated queens against ROS; this mechanism involves conversion of ROS using antioxidant enzymes and Tf-mediated inhibition of the Fenton reaction occurring between Fe2+ and H2O2. Our data indicate that an increased expression of antioxidant proteins could facilitate prolonged storage and survival of sperms in the spermatheca of mated queens, suggesting the role of antioxidant proteins in antioxidative defense against ROS.
        7.
        2018.10 구독 인증기관·개인회원 무료
        Royal jelly (RJ) is a well-known functional and medicinal food for human health promotion. Major royal jelly proteins (MRJPs), which are the major protein components in RJ, exhibit antimicrobial activities. However, the identities of the MRJPs of RJ responsible for its antioxidant effects have remained unclear. Here, we report that honeybee (Apis cerana) MRJP 2 (AcMRJP2) acts as an antimicrobial and antioxidant agent in RJ. Using recombinant AcMRJP2, which was produced in baculovirus-infected insect cells, we established the antimicrobial and antioxidant roles of MRJP 2. AcMRJP2 bound to the surfaces of bacteria, fungi, and yeast, which then induced structural damage in the microbial cell walls and led to a broad spectrum of antimicrobial activities. AcMRJP2 protected mammalian and insect cells via the direct shielding of the cell against oxidative stress, which led to reduced levels of caspase-3 activity and oxidative stress-induced cell apoptosis, followed by increased cell viability. Moreover, AcMRJP2 exhibited DNA protection activity against reactive oxygen species (ROS). Our data indicate that AcMRJP2 could play a crucial role as an antimicrobial agent and antioxidant in RJ, suggesting that MRJP 2 is a component responsible for the antimicrobial and antioxidant activities of RJ.
        8.
        2018.10 구독 인증기관·개인회원 무료
        Bee venom, which serves as a weapon to defend the colony from predator attacks, induces an immediate local inflammatory response that causes acute redness and swelling at the site of the sting. This venom-induced inflammation is a rapid anti-predatory defense strategy of the bee against vertebrate predators. Although acute inflammation by venom from venomous arthropods, including bees, is a typical response, how venom acutely elicits inflammatory responses remains unknown. Here, we identify a novel mechanism underlying acute inflammation and provide a rationale for the presence of superoxide dismutase (SOD3) in bee venom. In mouse models, paradoxically, SOD3 in bee venom (bvSOD3) acts as a reactive oxygen species (ROS)-based harm-inducing system to promote acute inflammation. Exogenous bvSOD3 rapidly induced overproduction of H2O2 through endogenously produced superoxide by venom components, such as melittin and phospholipase A2 (PLA2), which then upregulated the expression of proinflammatory genes and promoted the acute inflammatory response. Furthermore, a more severe noxious effect by bvSOD3 elevated a type 2 immune response, and bvSOD3 immunization protected against bvSOD3-mediated toxicity. Our findings that bvSOD3 promotes an acute inflammatory response and induces a protective immune response against inflammation may offer a new approach in venom therapy/immunotherapy.
        9.
        2018.04 구독 인증기관·개인회원 무료
        Major royal jelly proteins (MRJPs), important protein components of bee royal jelly (RJ) and exclusive nourishments for queen, exhibit various biological and pharmacological activities. RJ is one of the most studied bee products, but the crucial roles for MRJP2 as an antimicrobial and antioxidant agents remain largely unknown. Here we demonstrated the antimicrobial and antioxidant functions of the Asiatic honeybee (Apis cerna) MRJP2 (AcMRJP2). Recombinant AcMRJP2 of approximately 53 kDa was expressed in baculovirus-infected insect cells, and it exhibited antimicrobial activity against bacteria, fungi, and yeast via binding to microbial surfaces and inducing structural damage in microbial cell walls. AcMRJP2 protected mammalian and insect cells against oxidative damage through shielding of cell membranes. Interestingly, AcMRJP2 exhibited DNA protection activity and DPPH radical-scavenging activity. Altogether, our data demonstrated that AcMRJP2 functions as antimicrobial and antioxidant agents.
        10.
        2018.04 구독 인증기관·개인회원 무료
        Honeybee (Apis mellifera) egg-yolk protein vitellogenin (Vg) plays roles in immunity, antioxidation, and life span beyond reproduction, but it also acts as an allergen Api m 12 in venom. Here we established antimicrobial and antioxidant roles of honeybee Vg in the body and venom. Using the cDNA encoding Vg identified from Asiatic honeybee (A. cerana) workers, recombinant A. cerana Vg (AcVg) protein of approximately 180 kDa was produced in baculovirus-infected insect cells. In A. cerana worker bees, AcVg was expressed in the fat body and venom gland and was present in the secreted venom. AcVg induced structural damage in microbial cell walls via binding to microbial surfaces and exhibited antimicrobial activity against bacteria and fungi. AcVg protected mammalian and insect cells against oxidative damage through direct shielding of cell membranes. Interestingly, AcVg exhibited DNA protection activity against reactive oxygen species (ROS). Furthermore, the transcript level of AcVg was upregulated in the fat body, but not in the venom gland, of worker bees with antimicrobial peptides and antioxidant enzymes in response to microbial infection and oxidative stress. Our data indicate that AcVg is involved in innate immunity upon infection and in a defense system against ROS, supporting a crucial role of honeybee Vg as an antimicrobial and antioxidant agent in the body and venom.
        11.
        2017.10 구독 인증기관·개인회원 무료
        Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putativelow-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identifiedfrom honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated.In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shownto act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-likedomain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putativelow-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide.Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin,but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however,it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPIinhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial andfungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. Thesefindings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor.
        12.
        2017.10 구독 인증기관·개인회원 무료
        Major royal jelly proteins (MRJPs) are important protein components of bee royal jelly (RJ) and exhibit various biologicaland pharmacological activities. The antimicrobial activities of royalisins and the jelleines contained within MRJP 1 andMRJP 2 in RJ have been elucidated. However, the antimicrobial effects of other bee RJ MRJPs remain largely unknown.In this study, we demonstrated that the Asiatic honeybee (Apis cerana) MRJP 4 (AcMRJP4) exhibits antimicrobial activitiesagainst bacteria, fungi, and yeast. Recombinant AcMRJP4 was expressed as a 63-kDa protein in baculovirus-infected insectcells. However, some of the recombinant AcMRJP4 proteins were cleaved into two fragments (i.e., 48-kDa (AcMRJP4-48)and 15-kDa (AcMRJP4-15) proteins) by the proteolytic cleavage of the C-terminus of the recombinant AcMRJP4. Interestingly,AcMRJP4, AcMRJP4-48, and AcMRJP4-15 exhibited antimicrobial activities, with AcMRJP4-15 exhibiting the highestantimicrobial activity, followed by AcMRJP4. AcMRJP4-15, which is a hydrophilic peptide with 88 amino acid residuesthat contains a high content of Asn and positively charged amino acids, induced structural damage in the cell walls ofthe assayed bacteria, fungi, and yeast. Altogether, our data demonstrated that AcMRJP4 functions as an antimicrobial agent.
        13.
        2017.10 구독 인증기관·개인회원 무료
        Serine proteases and serine protease homologs are involved in the prophenoloxidase (proPO)-activating system leadingto melanization.The Bombyx mori serine protease homolog BmSPH-1 regulates nodule melanization. Here, we show the dualrole of BmSPH-1 in the development and immunity of B. mori. BmSPH-1 was expressed in hemocytes after molting andduring the larval-pupal transformation in normal development. In contrast, following infection, BmSPH-1 was expressed inhemocytes and activated in the hemolymph, which resulted in the induction of PO activity. Moreover, BmSPH-1 was activatedin the cuticle during the larval-pupal transformation and early pupal stages. In BmSPH-1 RNAi-treated silkworms, the reducedBmSPH-1 mRNA levels during the spinning stage or the prepupal stage resulted in the arrest of pupation or pupal cuticularmelanization, respectively. The binding assays revealed that BmSPH-1 interacts with B. mori immulectin, proPO, andproPO-activating enzyme. Our findings demonstrate that BmSPH-1 is responsible for the larval-pupal transformation, pupalcuticular melanization and innate immunity of silkworms, illustrating the dual role of BmSPH-1 in development and immunity.
        14.
        2017.04 구독 인증기관·개인회원 무료
        Insect immulectins are involved in various aspects of the innate immunity, including encapsulation, melanization, and phagocytosis. Although the silkworm Bombyx mori immulectin (BmIML) has been reported previously, the ligand and functions of BmIML have not been investigated. Here, we show the dual roles of BmIML in cuticular melanization and immunity of B. mori. BmIML recognizes carbohydrates in a Ca2+-dependent manner and binds to Gram-negative and Gram-positive bacteria, fungi, and yeast. BmIML was expressed in the fat body during infections and localized to the hemocytes of silkworms. Additionally, BmIML was expressed in the epidermis during the prepupal stage and localized to the cuticle of silkworms. After treatment with E. coli, dopa, dopamine, or tyrosine injections, BmIML production was induced in the fat body but not in the epidermis of silkworms. Treatment with BmIML RNAi resulted in the arrest of pupal cuticular melanization. Therefore, we concluded that BmIML is involved in pupal cuticular melanization and innate immunity responses of silkworms, suggesting dual roles for BmIML.
        15.
        2017.04 구독 인증기관·개인회원 무료
        In insects, serine proteases are involved in a variety of physiological processes including digestion, development, and immunity. Bombyx mori serine protease homolog BmSPH-1 regulates nodule melanization and is recruited into nodules from the hemolymph by B. mori lipopolysaccharide-binding protein. Here, we show the dual role of BmSPH-1 in development and immunity of B. mori. BmSPH-1 was expressed in the hemocytes during larval-pupal transformation and localized to the cuticle of silkworms, which indicates that BmSPH-1 is secreted from hemocytes and then transported to the cuticle via the hemolymph. BmSPH-1 was proteolytically activated in the cuticle during larval-pupal transformation and the early pupal stage. BmSPH-1 RNAi resulted in the arrest of larval-pupal transformation and pupal cuticular melanization. Furthermore, the expression of BmSPH-1 was up-regulated in the hemocytes during infection. Taken together, we found that BmSPH-1 is involved in larval-pupal transformation and pupal cuticular melanization as well as the innate immunity of silkworms, which indicates that BmSPH-1 is responsible for either development or immunity.
        16.
        2016.10 구독 인증기관·개인회원 무료
        Bee venom is a complex mixture of toxic components that induces immediate local inflammatory and allergic responses. However, the presence and role of superoxide dismutase (SOD) in bee venom have not been previously investigated. Here, we provide the first demonstration that bee venom contains Cu,Zn SOD (SOD3), a novel extracellular component that promotes local inflammation. Bee venom SOD3 was shown to be an oxidant, rather than an antioxidant, that induces the inflammation-signaling molecule H2O2 in vivo. H2O2 plays a pathological role by triggering an immediate local inflammatory response. Furthermore, bee venom SOD3 significantly induced the activation of proinflammatory mediators (TNF-α and COX-2) and cytokines (IL-1β and IL-6) via the overproduction of H2O2 in mice. Our data demonstrate that bee venom SOD3 induced H2O2, which drives an immediate local inflammatory response, indicating a novel mechanism underlying bee venom-induced local inflammation.
        17.
        2016.04 구독 인증기관·개인회원 무료
        Osmia cornifrons is a cavity-nesting solitary species used as an apple pollinator in Korea. To elucidate the developmental characteristics of O. cornifrons, we investigated its development from the egg to adulthood, including a dormant prepupal phase and mating through indoor rearing (25 °C, 65% R.H.). The egg durations of the female and male bees were 3.6 ± 0.8 days and 3.1 ± 1.3 days, respectively. During larval development, the head widths of the 1st to 5th instars ranged from 0.7 ± 0.1 mm to 1.3 ± 0.1 mm. The peak of the growth in head width was the 2nd instar. The larval lengths ranged from 3.7 ± 0.6 mm to 13.6 ± 1.3 mm. The peak of growth was the 4th instar. The larval weights ranged from 4.5 ± 1.2 mg to 78.3 ± 16.1 mg. The peak of growth was the 3rd instars. The total larval durations of from the 1st to 5th instars for the females and males were 14.0 ± 6.0 days and 13.2 ± 5.8 days, respectively. The spinning durations of the females and males were 2.2 ± 0.7 days and 2.3 ± 0.8 days, the prepupation durations were 55.5 ± 5.9 days and 55.8 ± 2.9 days, and the pupation durations were 26.4 ± 2.1 days and 25.3 ± 2.3 days, respectively. The average longevity of the female adults and male adults was 21.8 ± 8.7 days and 24.4 ± 12.4 days, respectively. The total duration of from the egg to an adult bee of the O. cornifrons females and males was 123.5 days and 124.1 days, respectively. Mating consisted of the three following phases: the precopulatory (courtship and attempting copulation), copulation and postcopulatory phases. The mating times of the precopulatory, copulation and postcopulatory phases were 159.6 ± 288.9, 8.4 ± 7.1, 12.9 ± 4.5, and 198.8 ± 69.8 seconds.
        18.
        2016.04 구독 인증기관·개인회원 무료
        Serine protease inhibitors play a critical role in physiological processes and immune responses by regulating serine protease activities. Here we describe the molecular cloning and antimicrobial activities of a serine protease inhibitor from the mason bee, Osmia cornifrons (OcSPI). OcSPI consists of 405 amino acid residues and contains a potential reactive center loop (RCL) region in its C-terminus. Recombinant OcSPI was produced as a 64-kDa glycoprotein in baculovirus-infected insect cells and exhibited inhibitory activity against chymotrypsin. Additionally, OcSPI demonstrated inhibitory activity against microbial serine proteases, such as subtilisin A and proteinase K, but not against tissue plasminogen activator, thrombin, or plasmin. Recombinant OcSPI bound directly to Escherichia coli, Bacillus subtilis, and Beauveria bassiana and exhibited antimicrobial activity against both bacteria and fungi. Our results demonstrated the antimicrobial functions of OcSPI and suggest a role for OcSPI in the immune response of O. cornifrons.
        19.
        2015.10 구독 인증기관·개인회원 무료
        Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the first evidence that the Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as a clotting factor. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 exhibited anti-microbial activity against fungi and Gram-positive and Gram-negative bacteria. Taken together, our data demonstrated that AcSecapin-1 has a multifunctional role as an anti-fibrinolytic agent, an anti-elastolytic agent, and an anti-microbial peptide, and our data suggested novel functions for the biological actions of the bee venom peptide, secapin.
        20.
        2015.10 구독 인증기관·개인회원 무료
        The honeybee inhibitor cysteine knot (ICK) peptide acts as an antifungal peptide and insecticidal venom toxin. However, the ICK peptide from bumblebees has not been characterized. Here, we report the molecular cloning and antifungal activity of a bumblebee (Bombus ignitus) ICK peptide (BiICK). We identified a BiICK that contains an ICK fold. The BiICK was expressed in the epidermis, fat body, and venom gland of B. ignitus worker bees. A 6.7-kDa recombinant BiICK peptide was expressed in baculovirus-infected insect cells. Recombinant BiICK peptides directly bound to Beauveria bassiana, Ascosphaera apis, and Fusarium graminearum, but they did not bind to Escherichia coli, Paenibacillus larvae, or Bacillus thuringiensis. Consistent with this finding, BiICK exhibited antifungal activity against fungi. These results demonstrate that BiICK acts as an antifungal peptide.
        1 2 3 4 5