A novel recombinant baculovirus, NeuroBactrus, was constructed to develop an improved baculovirus insecticide with additional beneficial properties such as higher insecticidal activity and recovery to wild-type baculovirus. For this, Bacillus thuringiensis crystal protein gene (cry1-5) was introduced into Autographa californica nucleopolyhedrovirus (AcMNPV) genome by fusion of polyhedrincry1- 5-polyhedrin under the control of poyhedrin gene promoter. In the opposite direction of this fusion gene, an insect-specific neurotoxin gene (AaIT) under the control of early promoter from Cotesia plutellae bracovirus was introduced by fusion of orf603 partial fragment. Western hybridization and confocal microscopy revealed that AaIT neurotoxin and Polyhedrin-Cry1-5-Polyhedrin fusion protein expressed by the NeuroBactrus and that the fusion protein occluded into the polyhedra. In addition, the fusion protein was activated as about 65 kDa of crystal protein when treated with trypsin. The NeuroBactrus showed high level of insecticidal activity against Plutella xylostella larvae and significant reduction in median lethal time (LT50) against Spodoptera exigua larvae compared to those of wild-type AcMNPV. Re-recombinants derived from the NeuroBactrus, NBt-Del5 (deleted cry1-5), NBt-DelA (deleted AaIT) and NBt-Del5A (deleted cry1-5 and AaIT; wild-type baculovirus) were generated in serial passages in vitro and in vivo. These results suggested that the NeuroBactrus could be transferred to wild-type baculovirus along with serial passages by the homologous recombination between two polyhedrin genes and two partial orf603 fragments.