Adhesive joint method has been used instead of welding, reveted joint, bolt and nut in various industry fields recently. Aluminum foam has hole or crack on adhesive interface which is different from common composite material. To investigate shear characteristic of adhesive interface between aluminum foams, double cantilever beams(DCB) with thicknesses of 25mm, 45mm and 65mm bonded with single-lab joints are designed. The relation between nodes at finite element model is important to investigate adhesive strength in this study. All meshes are generated and some nodes are located on adhesive zone along collinear axis. As reaction force obtained by static experiment is applied, fatigue analysis is carried with 10Hz. In advance, adhesive property is obtained by preliminary experiment for applying adhesive strength to input into simulation analysis. With these conditions, the analysis results show that 2.97MPa, 3.10MPa and 4.2MPa of maximum equivalent stresses are shown respectively in case model thicknesses are 25mm, 45mm and 65mm. By use of the simulation result at this study, it is possible to find adhesive behavior of aluminum foam and be applied to real adhesive joint structure without experiment by sparing experimental cost and time