논문 상세보기

알루미늄 폼의 경사진 이중외팔보 모델에서의 피로해석 및 실험 검증 KCI 등재

Fatigue Analysis and Experimental Verification at Tapered Double Cantilever Beam(TDCB) Model of Aluminum Foam

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/291984
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국기계기술학회지 (Journal of the Korean Society of Mechanical Technology)
한국기계기술학회 (Korean Society of Mechanical Technology)
초록

Recently, the light weight and the safety of automobile are the important targets of automotive design and the parts for car have been substituted the plastic or the porous material for the steel material. As the aluminium foam has many pores at its surface, it has the fatigue property of bonded face which differs from general material. In this study, two dimensional model is designed and performed with the fatigue analysis as the variable(θ value) becomes the slant angle of bonded face at the specimen with the aluminium foam. As the analysis result on the models with the slant angles of 6°, 8° and 10°, the bonding forces are disappeared when the fatigue loads are repeated during 4000 cycle, 4500cycle and 5000cycle respectively. By comparing with the analysis results of three models, the fatigue cycle to endure fatigue load becomes larger as the slant bonded angle becomes higher. So, the structural safety can be seen by applying only as only a simulation of finite element method instead of the experiment where much cost and time is spent. In this study, the configuration of aluminum foam is designed with the shape of TDCB Mode II. The shear fatigue strength of the bonded structure can be evaluated by the analysis program of ANSYS.

목차
Abstract
 1. 서론
 2. 연구모델 및 경계설정
  2.1 연구모델
  2.2 경계 조건의 설정
 3. 해석결과
  3.1 θ=6°인 모델에 대한 해석 결과
  3.2 θ=8°, θ=10°인 모델에 대한 해석 결과
  3.3 해석 데이터의 실험 검증
 4. 결론
 후기
 References
저자
  • 손홍붕(공주대학교 대학원 기계공학과) | Hong- Peng Sun
  • 조재웅(공주대학교 기계자동차공학부) | Jae- Ung Cho Corresponding Author