The influences of Na and K content on the crystal phase, the microstructure and the electrical property of BaTiO3-based thermistors was found to show typical PTC effects. The crystal phase of powder calcined at 1000˚C for 4hrs showed a single phase with BaTiO3, and the crystal structure was transformed from tetragonal to cubic phase according to added amounts of Na and K. In XRD results at 43˚~47˚, the (Ba0.858Na0.071K0.071)(Ti0.9985Nb0.0015)O3-δ showed (002) and (200) peaks but the (Ba0.762Na0.119K0.119)(Ti0.9975Nb0.0025)O3-δ showed (002), (020) and (200) peaks. In sintered bodies, those calcined at 600˚C rather than at 1000˚C were dense, and for certain amounts of Na and K showed rapid decreases in grain size. In relative permittivity, the curie temperature due to the transformation of ferroelectric phase rose with added Na and K but decreased in terms of relative permittivity. In the result of the R-T curve, the sintered bodies have curie temperatures of about 140˚C and the resistivity of sintered bodies have scores of Ω·cm; the jump order of sintered bodies was shown to be more than 104 in powder calcined at 1000˚C.