본 연구에서는 모수(parameter)가 시간에 따라 변화하는 비정상성 확률분포를 훙수빈도분석에 적용하였다. 또한, 비정상성을 가정한 재현기간 및 위험도를 추정하였다. GEV (Generalized Extreme Value) 분포를 사용하여 정상성 및 비정상성 모형 4개를 구축하였으며 비정상성 모형은 위치모수(location parameter)만 선형경향성을 가지는 경우, 규모모수(scale parameter)만 선형경향성을 가지는 경우, 위치 및 규모모수가 모두 선형경향성을 가지는 경우의 3가지로 구분되었다. 구축된 4개의 모형 중 적합모형을 선정하기 위해 상대적 우도비 검정과 Akaike 정보기준을 사용하였으며, 우리나라의 8개 다목적댐(충주댐, 소양강댐, 안동댐, 임하댐, 합천댐, 대청댐, 섬진강댐, 주암댐)으로부터 취득된 과거 관측 댐 유입량을 사용하여 제안된 절차를 적용하고 결과를 비교분석하였다. 적합모형 선정 결과 합천댐과 섬진강댐이 비정상성 GEV 모형에 적합한 것으로 분석되었고, 나머지 6개 지점의 다목적댐들은 정상성 모형에 적합한 것으로 분석되었다. 특히 합천댐과 섬진강댐의 경우 비정상성 가정에서 산정된 재현기간이 정상성 가정에서 산정된 재현기간보다 작게 산정되었음을 알 수 있었다.
This study performed the non-stationary flood frequency analysis considering time-varying parameters of a probability density function. Also, return period and risk under non-stationary condition were estimated. A stationary model and three non-stationary models using Generalized Extreme Value (GEV) were developed. The only location parameter was assumed as time-varying parameter in the first model. In second model, the only scale parameter was assumed as time-varying parameter. Finally, the both parameters were assumed as time varying parameter in the last model. Relative likelihood ratio test and Akaike information criterion were used to select appropriate model. The suggested procedure in this study was applied to eight multipurpose dams in South Korea. Using relative likelihood ratio test and Akaike information criterion it is shown that the inflow into the Hapcheon dam and the Seomjingang dam were suitable for non-stationary GEV model but the other six dams were suitable for stationary GEV model. Also, it is shown that the estimated return period under non-stationary condition was shorter than those estimated under stationary condition.