Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source.
Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the δ¹⁵N-NO₃and δ¹⁵N-NH₄values of IAEA-NO-3 and IAEA-N-1 were 4.7±0.2‰ and 0.4±0.3‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of δ¹⁵N-NO₃and δ¹⁵N-NH₄in effluent plumes from a waste water treatment plant in Han River, Korea. δ¹⁵N-NO₃and δ¹⁵N-NH₄values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.