Soluble salts are dominant form at reclaimed tidal saline soil, which can be improved by leaching with excessive irrigation water. The objective of this study was to evaluate the effect of irrigation on soil salinity and corn (Zea mays) growth at reclaimed tidal saline soil. A field experiment was conducted at Saemangeum reclaimed tidal land in Korea, during two successive growing seasons between 2013 and 2014. During the growing season, three different irrigation practices were applied as following; (1) irrigation at −35 kPa, (2) irrigation at −50 kPa, and (3) no-irrigation. Soil salinity was significantly decreased with increasing irrigation rates. Soluble cations were statistically decreased with irrigation; especially the depression of soluble Na was greater than other cations. Corn growth was significant with irrigation practice and the length of stem, panicle number, and stem thickness was statistically greater compared to the control. Although the germination rate was more than 95% in all treatment, withering rate was great in both growing seasons, which was significantly decreased with irrigation practice. Our results indicated that salt control is critical at reclaimed tidal saline soil and irrigation practice based on soil potential could be one of the best management options to alleviate salt damages for stable crop production at reclaimed tidal saline soil.