임의의 경계조건과 변두께를 갖는 축대칭 반구형 쉘과 반구형체의 진동수와 모우드형상을 결정하는 3차원적 해석법이 소개되었다. 수학적으로 2차원적인 전통적인 쉘이론과는 달리 본 연구의 해석법은 3차원 동적 탄성방정식을 사용하였다 자오선방향 (Φ), 법선방향(z), 원주방향()으로의 변위성분인 Φ, z, 는 시간에 대해서는 정현적으로, 에 대해서는 주기적으로, 와 z 방향에 대해서는 대수다항식으로 표현될 수 있다. 축대칭 반구형 쉘의 변형률 에너지와 운동 에너지를 정식화하고, 리츠법으로 고유치문제를 계산하였다. 진동수의 최소화과정을 통해 엄밀해의 상위 경계치 진동수를 구하였으며, 이 때, 다항식의 차수를 증가시키면 진동수는 엄밀해에 수렴하게 된다. 자오선방향으로 선형적으로 꿩 두께가 변하는 반구형 쉘과 반구형체치 3차원적 진동수를 최초로 계산하였으며, 축방향으로 난 조그만 원추형 구멍이 진동수에 미치는 영향도 분석하였다. 상두께와 자유경계조건을 갖는 두꺼운 축대칭 반구형 쉘에 대한 3차원적 리츠해와 3차원적 유한요소법에 의한 진동수를 서로 비교하였다.
A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components Φ, z, and in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.