검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 823

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ensuring operational safety and reliability in Unmanned Aerial Vehicles (UAVs) necessitates advanced onboard fault detection. This paper presents a novel, mobility-aware multi-sensor health monitoring framework, uniquely fusing visual (camera) and vibration (IMU) data for enhanced near real-time inference of rotor and structural faults. Our approach is tailored for resource-constrained flight controllers (e.g., Pixhawk) without auxiliary hardware, utilizing standard flight logs. Validated on a 40 kg-class UAV with induced rotor damage (10% blade loss) over 100+ minutes of flight, the system demonstrated strong performance: a Multi-Layer Perceptron (MLP) achieved an RMSE of 0.1414 and R² of 0.92 for rotor imbalance, while a Convolutional Neural Network (CNN) detected visual anomalies. Significantly, incorporating UAV mobility context reduced false positives by over 30%. This work demonstrates a practical pathway to deploying sophisticated, lightweight diagnostic models on standard UAV hardware, supporting real-time onboard fault inference and paving the way for more autonomous and resilient health-aware aerial systems.
        4,800원
        2.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        진동자극에 따른 틸라피아(Oreochromis niloticus)의 스트레스 반응에 대한 기초자료를 얻고자, 혈액[(cortisol, glucose, lactic acid, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein (TP), red blood cell (RBC), hemoglobin (Hb), hematocrit (Ht), 조직(liver, kidney, intestine) 및 성장을 분석하였다. 실험어류는 틸라피아(평균 전장 11.7±0.4 cm, 평균 체중 23.4±3.7 g)를 사용하였으며, 28일 동안 실험을 진행하였다. 실험구는 대조구, T1(10:00, 19:00), T2(10:00, 13:00, 16:00 19:00)로 각각 1시간씩 진동을 주었다. 혈액, 혈장, 간, 신장 및 장 샘플은 진동 노출 후 0, 7, 14, 21 및 28일에 채취하여 분석하였다. 혈장 코티졸 농도는 21일째 대조구와 T1에서 유의하게 높았으나, 28일째 감소하였다. 반면에, T2에서는 28일째 다른 실험군보다 유의하게 높아졌다. 젖산은 14일째 T2에서 다른 실험구에 비해 유의하게 높아졌다. 혈장 AST 및 ALT는 T2에서 실험기간동안 유의적으로 높아졌다. T1과 T2는 실험 기간 동안 혈장 TP가 증가하였다. T1은 28일째 다른 실험구에 비해 RBC, Hb 및 Ht가 유의하게 높아졌다. 조직관찰 결과, T2에서 간조직은 혈액 정맥동의 울혈 및 확장, 비대, 침윤, 공포화, 신장에서는 흑색 대식세포 증가, 간질 부종 및 장에서 괴사가 관찰되었다. 성장은 진동 자극 횟수가 증가함에 따라 최종 무게(final body weight), 체중성장률(growth rate for body weight, GRW), 일일성장률 (specific growth rate, SGR) 및 사료효율(feed efficiency, FE)이 대조군에 비해 감소하였으나 유의적인 차이는 보이지 않았다.
        4,300원
        4.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is a preliminary investigation into a method for updating analytical models using actual vibration measurement data to improve the reliability of the seismic performance evaluations. The research was conducted on 26 models with various parameters, aiming to develop an optimal analytical model that closely matches the natural frequencies of the actual building. By identifying the dynamic characteristics of the target building through vibration measurements taken just before the demolition of the structure, the natural frequency analysis results of the analytical models were compared to the measured data. Based on this comparison, an optimized method for adjusting the parameters of the analytical models was derived. Throughout the analysis, various parameters were adjusted, and the eigenvalue analysis results were corrected by comparing them with vibration measurements. Among the comparative analytical models, the model with the lowest error rate was selected. The results showed that, in all cases, the analytical model with a concrete compressive strength of 16 MPa (based on actual measurements), pin boundary conditions, and an idealized strip footing cross-section had the closest match to the actual building's natural frequencies, with an average error of less than 8%.
        4,000원
        5.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a control algorithm was developed to suppress the free vibration amplitude of a cantilever beam with time-varying dynamic characteristics. In other words, since it is assumed that the natural frequency and mode shape of the vibrating structure are not fixed, the system model of the vibrating structure was not used in the control algorithm. A single electromagnet was chosen as the actuator, so the attractive force was applied to only one fixed location in the structure. Through experiments, the proposed control algorithm is proven to effectively suppress the amplitude of vibration even when the dynamic characteristics of the cantilever beam change. Contrary to the usual active vibration control method, the proposed algorithm is just simple and intuitive without complicated mathematics in the modeling and control process. However, the proposed control method is very effective to suppress the vibration even when the dynamic characteristics of the target structure is not exactly known, as is often the case in industries or laboratories.
        3,000원
        6.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to design a seismic safety of a cabinet affected by an earthquake, vibration analysis was performed using a model cabinet. In order to analyze the vibration characteristics of the cabinet under earthquake conditions, 3D finite element analysis was performed using ANSYS Workbench and SolidWorks. The modal analysis of the cabinet showed nine natural modes and natural frequencies, and showed the deformation and vibration of the cabinet panel for each mode. The frequencies of the 1st and 2nd modes, which are low modes, were 10% of the natural frequency value of the 9th mode, so it was easy to predict the possibility of resonance occurrence. The response spectrum due to the earthquake showed that the displacement, acceleration, and stress distribution of the cabinet had different behaviors in the x, y, and z directions, and especially showed very large values in the z direction. Although the vibration characteristics of the structure were evaluated using the modal characteristics and response spectrum for the cabinet, research on the application of a tuned mass damper is necessary for the dynamic characteristics process of the cabinet due to an earthquake and resonance reduction.
        4,000원
        7.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The multi-local resonance metamaterial is based on the local resonance mechanism of resonators, effectively blocking wave propagation within multiple resonant frequency ranges, a phenomenon known as band gaps. In practical applications for vibration reduction, the goal is to achieve wide-band vibration attenuation at low frequencies. Therefore, this study aims to improve the vibration reduction performance of multi-local resonance metamaterials by lowering the band gap frequency and expanding the band gap width. To achieve this, an objective function was formulated in the optimization problem, considering both the frequency and width of the band gap, with the geometric shapes of the multiple local resonators selected as design variables. The Sequential Quadratic Programming (SQP) technique was employed for optimization. The results confirmed that the band gap was generated at lower frequencies and that the band gap width was expanded.
        4,000원
        8.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes a steel plate retrofit method and a polyurea method to improve the structural stability and usability of a factory floor slab with a thickness of 120mm. To assess vibration changes, vibrations were measured before and after retrofit. A numerical analysis model was also developed to evaluate improvements in structural safety and usability. The natural frequency increased from 11.4Hz to 17Hz through steel plate reinforcement, confirming an increase in slab stiffness. The damping ratio increased from 2.3% to 3.2% with polyurea reinforcement, indicating improved vibration reduction. Additionally, numerical analysis modeling showed that the natural frequency increased from 13.9Hz to 16.2Hz due to the steel plate reinforcement, enhancing the dynamic characteristics of the floor slab and confirming the reliability of the analysis model.
        4,000원
        11.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prevent disconnection of the hydraulic pump EDV cable, this study judged the vibration generated by the pump as the greatest effect on disconnection, and confirmed the vibration effect. And it had a structure that was vulnerable to vibration because of the wire flow space inside the EDV cable connector. After applying the improved adapter, vibration analysis, excitation test, and bending strength test were performed to confirm the effectiveness of design change and improvement. As a result of vibration analysis, the amount of vibration was reduced by about 10 times compared to the existing product, and the strength increased by about 4 times in the bending strength test was confirmed to increase the effect of preventing disconnection due to vibration.
        4,000원
        12.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this article, improvement of heat screen failure for battle tank is proposed. The heat screen applied to protect a cam sensor from engine heat was cracked by vibrations generated in the engine. To solve this problem, the configuration of the heat screen was changed to a structure that can avoid engine vibration levels. The improved heat screen has first mode frequency at 4,000 RPM band outside the main operating range of the engine, and heat dissipation is at the same level as conventional heat screen. As a result, the improved heat screen secured reliability by improving vibration effects by approximately 163% while maintaining heat dissipation performance.
        4,000원
        13.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the inertial electromagnetic actuator (IEA) and the FxLMS (filtered-x least mean square) method were applied to study vibration control using the active mount. IEA was designed and manufactured for the experiment, and FxLMS algorithm was developed to evaluate control performance and mount dynamic characteristics. For the vibration control experiment, active mounts were installed at the top and bottom, and the lower active mount controls the force transmitted to the structure by the excitation signal from the upper active mount. The experiment was performed by simultaneously exciting three frequencies in three axes. From the experimental results, it was confirmed that the force measured at the lower active mount when the actuator is off is greatly reduced when the actuator is on, and that vibration reduction in the vertical z-axis is more effective than vibration reduction in the x-y plane.
        4,000원
        15.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The tire-pavement interaction noise (TPIN) comprises four sources, among which the tire tread vibration noise (TTVN) and air pumping noise (APN) are known to be the most influential. However, when evaluating TPIN, the noise level is estimated based on the overall noise, because general noise measurement methods cannot separate TTVN and APN. Therefore, this study aims to develop a method to separate TTVN and APN in TPIN for quantitative assessment of pavement noise. METHODS : Based on the results of our literature review and frequency band noise data measured in our study, we identified the dominant frequency ranges for TTVN and APN. Additionally, we evaluated TTVN and APN across various pavement types. RESULTS : TTVN was found to be dominant in frequency bands below 800 Hz, while APN was dominant in frequency bands above 800 Hz. Additionally, regardless of the vehicle type, vehicle speed, or pavement type, APN exhibited higher levels compared to TTVN. This result shows that APN has a more significant impact on TPIN than TTVN. CONCLUSIONS : The separation method of TTVN and APN proposed in this study can be utilized to quantitatively assess the relationship between the primary noise sources in TPIN and the characteristics of pavement texture in future research. Furthermore, it is anticipated that characteristics of low TPIN and optimal texture conditions can be proposed to mitigate TPIN, thus contributing to the development of lownoise pavements.
        4,000원
        16.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.
        4,000원
        18.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Earthquakes of magnitude 3.0 or greater occur in Korea about 10 times on average yearly, and the number of earthquakes occurring in Korea is increasing. As many earthquakes have recently occurred, interest in the safety of nuclear power plants has increased. Nuclear power plants are equipped with many cabinet-type control facilities to regulate safety facilities, and function maintenance is required during an earthquake. The seismic performance of the cabinet is divided into structural and functional performances. Structural performance can be secured during the design procedure. Functional performance depends on the vibration performance of the component. Therefore, it is necessary to confirm the seismic performance of the components. Generally, seismic performance is confirmed through seismic simulation tests. When checking seismic performance through seismic simulation tests, it is difficult to determine the effect of frequency and maximum acceleration on an element. In this paper, shaking table tests were performed using various frequencies and various maximum accelerations. The seismic performance characteristics of the functions of electrical equipment components were confirmed through tests.
        4,000원
        20.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper introduces a study on measuring the 3D vibration displacement of plate structure using Digital Image Correlation (DIC) applied to stereo digital continuous camera images. The proposed method is a non-contact 3D displacement measurement method that does not require physical sensors to be attached to the structure, and it has the advantage of simultaneously measuring dynamic displacements at multiple points on the structure. Theoretically, multiple cameras can be used, but in this study, two cameras were used to capture continuous images of the vibrating structure, and the image coordinates of multiple tracking points at arbitrary positions on the structure were measured using correlation matching. Using these image coordinates as input data, the dynamic 3D positions were calculated through Space intersection, successfully determining the 3D dynamic displacements. The measured dynamic displacements were validated for accuracy by comparing them with values measured by laser displacement sensors. And frequencies of measured data were validated by comparing with computational modal analysis by Finite Element Model (FEM).
        4,000원
        1 2 3 4 5