간행물

한국공간구조학회지 KCI 등재 JOURNAL OF THE KOREAN ASSOCIATION FOR AND SPATIAL STRUCTURES

권호리스트/논문검색
이 간행물 논문 검색

권호

제24권 제4호 (2024년 12월) 11

1.
2024.12 구독 인증기관 무료, 개인회원 유료
4,800원
3.
2024.12 구독 인증기관·개인회원 무료
4.
2024.12 구독 인증기관 무료, 개인회원 유료
This study proposes an economically affordable method for retrofitting non-seismic detailed roof reinforced concrete beam-column joints (BCJs). The proposed method presents an innovative arrangement of steel plates designed to delay the propagation of joint shear cracks by externally applying compressive stress to the area surrounding the BCJs. Two full-scale sub-assemblage specimens for each exterior and interior roof BCJ, i.e., control and retrofitted specimens, were subjected to reversed cyclic loading to evaluate the proposed method. The retrofitted specimens displayed a preferable ductile behavior to the corresponding control specimen, with an enhancement in lateral strength by at least 100%. Furthermore, retrofitted specimens dissipated up to 13 times more energy than the control specimen by initiating a plastic hinge on beams or columns. These results indicated the effectiveness of the proposed method in preventing joint shear failure and improving the seismic behavior of roof BCJs.
4,000원
5.
2024.12 구독 인증기관 무료, 개인회원 유료
The diagrid structural system has a braced frame that simultaneously resists lateral and vertical loads, and is being applied to many atypical high-rise buildings for aesthetic effects. In this study, a 60-story structure with twisted degrees of 0° to 180° was selected to determine seismic response control performance of twisted high-rise structures whether the diagrid system was applied and according to the reduction of braced frame material quantity. For this purpose, ‘Nor’ model without the diagrid system and the ‘DS’ model with the diagrid system, which was modeled by reducing braced frame member section to 700~400, were modeled. As a result, the 'DS' model showed an seismic response control effect in all Twisted models even when the quantity was reduced, and especially, the Twisted shape model was found to have an superior response control effect compared to the regular structure. In addition, the ‘600DS’ analysis model, which matched the ‘Nor’ model by 99.0% in quantity, showed an increase in seismic response control performance as the rotation angle increased.
4,000원
6.
2024.12 구독 인증기관 무료, 개인회원 유료
The purpose of this study is to experimentally analyze the seismic performance of a vertical irregular beam-column specimen reinforced with RBS (Replaceable Steel Brace System), a steel brace system. To evaluate the seismic performance of RBS, three specimens were manufactured and subjected to cycle loading tests. The stiffness ratio of beam-upper column of the non-retrofitted specimen was 1.2, and those of the two retrofitted specimens were 1.2 and 0.84. The stiffness ratio of the beam-lower column of all specimens was 0.36. And the stiffness ratio were used for variable. As a result of the experiment, the specimen retrofitted with RBS showed improved maximum load, effective stiffness and energy dissipation capacity compared to the non-retrofitted specimen with the same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance compared to the specimen with 1.2 stiffness ratio.
4,000원
7.
2024.12 구독 인증기관 무료, 개인회원 유료
Performance-Based Seismic Design (PBSD) is an approach that evaluates how structures will perform under different levels of seismic activity. It focuses on ensuring that buildings not only withstand earthquakes but also meet specific performance objectives, such as minimizing damage or maintaining functionality after the event. Unlike traditional methods, PBSD allows for more tailored, cost-effective designs by considering varying degrees of acceptable damage based on the structure's importance and use. PBSD was introduced in Korea in 2016 to replace elastic design, which is inevitable to over-design to cope with all variables such as earthquakes and winds. When PBSD is applied to the structural design new building, One of the challenges of PBSD is the complexity involved in creating accurate inelastic analysis models. The process requires significant time and effort to analyze the results, as it involves detailed simulations of how structures will behave under seismic stress. Additionally, organizing and interpreting the analysis data to meet performance objectives can be labor-intensive and technically demanding. In order to solve this problem, a post-processor program was developed in this study. A post-processor was developed based on Excel program using Visual Basic for Applications(VBA). Because analysis outputs of Perform-3D, that is a commercial software for structural analysis and design, are very complicated, generation of tables and graphs for report is significant time and effort consuming task. When the developed post-processor is used to make the seismic design report, the required task time is significantly reduced.
4,000원
8.
2024.12 구독 인증기관 무료, 개인회원 유료
This study proposes a steel plate retrofit method and a polyurea method to improve the structural stability and usability of a factory floor slab with a thickness of 120mm. To assess vibration changes, vibrations were measured before and after retrofit. A numerical analysis model was also developed to evaluate improvements in structural safety and usability. The natural frequency increased from 11.4Hz to 17Hz through steel plate reinforcement, confirming an increase in slab stiffness. The damping ratio increased from 2.3% to 3.2% with polyurea reinforcement, indicating improved vibration reduction. Additionally, numerical analysis modeling showed that the natural frequency increased from 13.9Hz to 16.2Hz due to the steel plate reinforcement, enhancing the dynamic characteristics of the floor slab and confirming the reliability of the analysis model.
4,000원
9.
2024.12 구독 인증기관 무료, 개인회원 유료
The dome structure is suitable as a roof for large spatial structures because it can maintain the shape without installing columns in the internal space. However, the structure characteristics of the lower and upper structures of the dome structure are different, and damage may occur when an earthquake occurs. Therefore, in this study, mid-story isolation system was applied to the ribbed dome and geodesic dome structures to analyze the seismic response of the lower and upper structures according to the dome shape. As a result of the analysis, the displacement of the ribbed dome increased, but the deformation of the ribbed dome and the response of the lower structure decreased, and the seismic response of the geodesic dome decreased overall. From this result, the effect of the isolator according to the shape of the dome structure was confirmed, and the mid-story isolation is considered effective in reducing the seismic response of the upper and lower structures.
4,000원
10.
2024.12 구독 인증기관 무료, 개인회원 유료
With technological and social development, high-rise atypical buildings have emerged. In order to take into account the structural vulnerability due to their high-rise atypical shape, systems such as vibration control system and seismic isolation can be applied. In this study, dynamic behavior characteristics analysis was conducted based on the location of the seismic isolation system installation of the atypical facade shape Tapered and reverse shell structure models. With the installation of Lead Rubber Bearing(LRB), the maximum story drift ratio showed a decrease, but the maximum absolute acceleration showed a phenomenon in which the response was amplified in the middle and low story. LRB1(base isolation system) is the most effective for simultaneous control of the two dynamic responses, but the 46th floor of ‘Nor’ and’ RS’ and the 41st floor of ‘TA’ are considered the most effective installation location of the seismic isolation system in consideration of the burden of the seismic isolation system and the structure stability.
4,000원
11.
2024.12 구독 인증기관 무료, 개인회원 유료
This study aims to analyze the natural frequency characteristics of multi-cracked extensible beams. The model and governing equations of the multi-cracked beam were derived using Hamilton's principle while considering crack energy. The eigenmode functions were obtained through eigenvalue analysis by applying the patching conditions of the cracks, and the equations for the discretized cracked beam were formulated and solved. The displacement responses from nonlinear system analysis were used to calculate frequencies via Fast Fourier Transform (FFT), and the frequency characteristics were systematically analyzed with respect to the number of cracks, crack depth, and cross-sectional loss. Additionally, the natural frequencies and orthonormal bases of the linear system were derived by exploring the solutions of the characteristic equation reflecting the cracks. Numerical analyses showed that the natural frequency of a cracked extensible beam was higher than that of a cracked EB beam. However, as the number or depth of cracks increased, the natural frequency gradually decreased. Notably, in extensible beams with large deflections, the dynamic changes caused by cracks demonstrated results that could not be obtained through the EB beam model.
4,000원