간행물

한국공간구조학회지 KCI 등재 JOURNAL OF THE KOREAN ASSOCIATION FOR AND SPATIAL STRUCTURES

권호리스트/논문검색
이 간행물 논문 검색

권호

제20권 제4호 (2020년 12월) 20

특집기사

4.
2020.12 구독 인증기관 무료, 개인회원 유료
In the study, a shape finding procedure for the tensegrity system model inspired by the movement pattern of animal backbone was presented. The proposed system is allowing a dynamic movement by introducing the concept of “saddle” for the variable tensegrity structure. Mathematical process and an algorithm for movable tensegrity to specified points were established. Several examples have applied with in established shape finding analysis procedure. The final tensegrity structures were determined well to a object shape.
4,000원
5.
2020.12 구독 인증기관 무료, 개인회원 유료
In this study, performance experiments were performed on the shape of steel dampers that affect the rocking behavior. Three types of strut shapes of SI type, SV type and SS type were considered as experimental variables. As a result of the experiment, the capacity to resist the moment and drift ratio according to the strut shape of the steel damper was evaluated as very close. Finally, it was evaluated that the SV type steel damper has stable deformation and energy dissipation capability. As a result of the evaluation of the proposed damper transmission force, it is considered that the damper transmission force is evaluated larger than the applied horizontal force, and it is necessary to supplement it.
4,000원
6.
2020.12 구독 인증기관 무료, 개인회원 유료
This study examines the optimum shape of a trolley, the driving device of the retractable membrane roof. The closed-type trolley was determined as the model of the study, and a trolley composed of cylindrical-shaped inner and outer holders was selected as the basic model. Based on this model, a cylindrical-based optimal trolley model was proposed. In the basic trolley model, steel was used for the outer holder, and steel, titanium, and aluminum were used for the inner holder. In each case, the most economical shape for the external load of the basic model was newly proposed through the topology optimization process, and the finite element analysis results of the proposed model were compared to define the durability and economics. Here, topology optimization analysis and finite element analysis used the commercial software ANSYS. As a result of optimization, the volume of the outer holder of the trolley was reduced by 58.2% and the volume of the inner holder was reduced by 25.0% compared to the basic model. In the case of stress, a stress increase of 43.2 to 79.2% occurred depending on the material of the inner holder, but it was found to be significantly lower than the yield strength, thereby ensuring safety.
4,000원
7.
2020.12 구독 인증기관 무료, 개인회원 유료
The fluctuating wind pressure of the low rise ratio(f/D=0.1) for the elliptical dome roof was analyzed to compare it with the previous studies of circular dome roofs. Wind tunnel test were conducted on a total of 10 wind directions from 0° to 90° while changing wall height-span ratios(H/D=0.1-0.5). For this, meanCP, rmsCP and wind pressure spectrum were analyzed. The analysis result leads to find differences in the shape of the spectra in the spanwise direction and leeward of the elliptical dome according to the wind direction variations of the elliptical dome roof.
4,000원
8.
2020.12 구독 인증기관 무료, 개인회원 유료
In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.
4,000원
9.
2020.12 구독 인증기관 무료, 개인회원 유료
In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.
4,000원
10.
2020.12 구독 인증기관 무료, 개인회원 유료
In this study, structural characteristics were analyzed by combining gravity load and lateral loads such as seismic loads through static analysis of example structures, and the static characteristics of the twisted structure according to the plane rotation angle were also analyzed. Example structures were selected as regular structure, and twisted structures; 1.0, 2.0, and 3.0 degree angle of rotation per story, and static analysis was performed by the load combination case 1 and case 2. As a result the story drift ratio of the twisted-shaped structure also increased as the plane rotation angle per story increased. The eccentricity according to the load combination was the highest in the lower stories of all analysis models, and the eccentricity was found to be larger as the rotation angle decreased. The twisted-shaped structure was more responsible for the bending moment of the column than the regular structure, and the vertical member axial force of all analysis models was almost similar.
4,000원
11.
2020.12 구독 인증기관 무료, 개인회원 유료
In case of stone pagoda structures, the various construction types appear, and various damages occur due to exposure to the outdoors for a long time. Such damages can be classified into non-structural damages and structural damages. However, studies for the effects of structural damages on stone pagoda structures are insufficient. Accordingly, this study intends to perform structural modeling and structural analysis according to structural damages of stone pagoda structure, and to perform risk analysis through the fragility curve. So, we expects that this study gives a great contribution to the preservation and maintenance of stone pagoda structures under the various structural damages.
4,000원
12.
2020.12 구독 인증기관 무료, 개인회원 유료
There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.
4,200원
13.
2020.12 구독 인증기관 무료, 개인회원 유료
Generally the non-bearing walls in apartment buildings in Korea are not considered as a lateral force resisting members for the design consideration. This engineering practice caused large crack damages and brittle fractures of the non-bearing walls when subjected to Pohang earthquakes in 2017 since those have not been designed for seismic loading. In this study, finite element analysis was conducted for slot type non-bearing wall connection system to reduce damages and concentrate damages to the designated damping device through separation from the structural wall members. Steel plate and dowel bar systems designed for the dissipation of seismic energies were modeled and analyzed to investigate the damage reductions. Finally, the test result and the analysis result were compared and verified.
4,000원
14.
2020.12 구독 인증기관 무료, 개인회원 유료
In this paper, the hybrid prefabricated retrofit method is suggested and examined. Six specimens were manufactured in order to evaluate their flexural performance of RC beams. Test parameters include the added beam depth, the thickness of bottom plate, the number of the steel plate with openings. The effects of these parameters on the flexural performance of reinforced concrete beams were examined. The load-deflection behavior and modes of cracks are presented from the test results. At the test result, the flexural capacity and the ductility of the hybrid prefabricated retrofit method was increased satbly. Also, comparing the flexural performance of RC beam and retrofitted RC beams, it was increased that the flexural strength is about 3.3 times, the ductility is about 2.55 times, and energy dissipation capacity is about 7.34 times.
4,000원
15.
2020.12 구독 인증기관 무료, 개인회원 유료
Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.
4,000원
16.
2020.12 구독 인증기관 무료, 개인회원 유료
The governing equation for a dome-type shallow spatial truss subjected to a transverse load is expressed in the form of the Duffing equation, and it can be derived by considering geometrical non-linearity. When this model under constant load exceeds the critical level, unstable behavior is appeared. This phenomenon changes sensitively as the number of free-nodes increases or depends on the imperfection of the system. When the load is a periodic function, more complex behavior and low critical levels can be expected. Thus, the dynamic unstable behavior and the change in the critical point of the 3-free-nodes space truss system were analyzed in this work. The 4-th order Runge-Kutta method was used in the system analysis, while the change in the frequency domain was analyzed through FFT. The sinusoidal wave and the beating wave were utilized as the periodic load function. This unstable situation was observed by the case when all nodes had same load vector as well as by the case that the load vector had slight difference. The results showed the critical buckling level of the periodic load was lower than that of the constant load. The value is greatly influenced by the period of the load, while a lower critical point was observed when it was closer to the natural frequency in the case of a linear system. The beating wave, which is attributed to the interference of the two frequencies, exhibits slightly more behavior than the sinusoidal wave. And the changing of critical level could be observed even with slight changes in the load vector.
4,000원
17.
2020.12 구독 인증기관 무료, 개인회원 유료
The resilience performance evaluation method of a structure can evaluate the ability to recover after an earthquake disaster, and this study deals with the consideration and introduction of the resilience performance evaluation method. The resilience evaluation method can be expressed as a quantified number by constructing a loss estimation model and a recovery evaluation model. The recovery evaluation model should consider downtime in addition to the repair time, and the loss estimation model should consider not only direct loss to structures and non-structures, but also indirect loss due to functional loss of the building. In addition, to build a loss estimation model, the structure should be simplified to perform an efficient analysis. Therefore, in this study, the equivalent terminal induction system proposed cantilever-type and rahmen-type SDOF, and it is evaluated somewhat conservatively compared to the example structure, and it is judged that there is a need to improve the hysteresis characteristics by applying the stiffness reduction factor of the SDOF model.
4,000원
18.
2020.12 구독 인증기관 무료, 개인회원 유료
When an unexpected excessive seismic load is applied to the base isolation of arch structure, the seismic displacement of the base isolation may be very large beyond the limit displacement of base isolation. These excessive displacement of the base isolation causes a large displacement in the upper structure and large displacement of upper structure causes structural damage. Therefore, in order to limit the seismic displacement response of the base isolation, it is necessary to install an additional device such as an anti-uplift device to the base isolation. In this study, the installation direction of the base isolation and the control performance of the base isolation installed anti-uplift device were investigated. The installation direction of the base isolation of the arch structure is determined by considering the horizontal and vertical reaction forces of the arch structure. In addition, the separation distance of the anti-uplift device is determined in consideration of the design displacement of the base isolation and the displacement of the arch structure.
4,000원
19.
2020.12 구독 인증기관 무료, 개인회원 유료
This study evaluates safety assessment before and after repair of Seonamsa temple seungseon bridge, which refer to the representative Hongye bridge in Korea. In this approach natural frequency of the structure were considered in the modeling procedure. Trial & error method is applied to obtain the approximate natural frequency before and after retrofit construction. Stiffness of the actual structure was examined to account for the dynamic characteristics of Hongye bridge measured in the field and adjusting parameters in computer modeling. The safety and usability of the stone structure in terms of load bearing capacity and displacement were examined.
4,000원
20.
2020.12 구독 인증기관 무료, 개인회원 유료
A new lighting support structure composing of two-way wires and pulley, a pulley-type wireway system, was developed to improve the seismic performance of a ceiling type lighting equipment. This study verifies the seismic performance of the pulley-type wireway system using a numerical approach. A theoretical model fitted to the physical features of the newly-developed system was proposed, and it was utilized to compute a frictional coefficient between the wire and pulley sections under tension forces. The frictional coefficient was implemented to a finite element model representing the pulley-type wireway system. Using the numerical model, the seismic responses of the pulley-type wireway system were compared to those of the existing lighting support structure, a one-way wire system. The addition of the pulley component resulted in the increasement of energy absorption capacity as well as friction effect and showed in significant reduction in maximum displacement and oscillation after the peak responses. Thus, the newly-developed wireway system can minimize earthquake-induced vibration and damage on electric equipment.
4,000원