간행물

한국공간구조학회지 KCI 등재 JOURNAL OF THE KOREAN ASSOCIATION FOR AND SPATIAL STRUCTURES

권호리스트/논문검색
이 간행물 논문 검색

권호

제19권 제3호 (2019년 9월) 12

기 술 기 사

논문

4.
2019.09 구독 인증기관 무료, 개인회원 유료
A seismic isolation system is one of the most effective control devices used for mitigating the structural responses due to earthquake loads. This system is generally used as a type of base isolation system for low- and mid-rise building structures. If the base isolation technique is applied to high-rise buildings, a lot of problems may be induced such as the movement of isolation bearings during severe wind loads, the stability problem of bearings under large compression forces. Therefore, a mid-story isolation system was proposed for seismic protection of high-rise buildings. Residence-commerce complex buildings in Korea have vertical irregularity because shear wall type and frame type structures are vertically connected. This problem can be also solved by the mid-story isolation system. An effective analytical method using super elements and substructures was proposed in this study. This method was used to investigate control performance of mid-story isolation system for residence-commerce complex buildings subjected to seismic loads. Based on numerical analyses, it was shown that the mid-story isolation system can effectively reduce seismic responses of residence-commerce complex tall buildings.
4,000원
5.
2019.09 구독 인증기관 무료, 개인회원 유료
The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.
4,000원
6.
2019.09 구독 인증기관 무료, 개인회원 유료
A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.
4,000원
7.
2019.09 구독 인증기관 무료, 개인회원 유료
A tensegrity module structure is suitable type for spatial structures. Because the tensegrity is composed of set of discontinuous compressive elements (struts) floating within a net of continuous tensile elements (cables), the system can provide the basis for lightweight and strong. However, despite the advantages of tensegrities, design and fabrication of the systems have difficulty because of form-finding methods, pin-connection and the control of prestress. In this paper, the new pin-connection method was invented to make the tensegrity module. The production process and practical implementation of uniformly compressed the tensegrity structures by using a UTM are described. Experiments showed the mechanical response and failure aspects of the tensegrity system.
4,000원
8.
2019.09 구독 인증기관 무료, 개인회원 유료
A Beam String Structure (BSS) is a type of hybrid structures, which is composed of upper structural members, lower strings, and struts. Due to the advantages that the pre-tensioned strings elicit pre-caber of the upper structural members, the deflection can be greatly reduced without increasing the structural member size. In this study, a two-way beam string structure is proposed to endure bi-directional loading. The two-way beam string structure consists of two cable parts, namely, sagging and arch-shaped cables. A parametric study is presented aimed at proposing design guide lines of the two-way beam string structures. Numerical finite element analyses through the ABAQUS package were implemented to obtain their behaviors.
4,000원
9.
2019.09 구독 인증기관 무료, 개인회원 유료
AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. Fire safety for the practical application of the composite beam has also been verified through the fire resistance tests and the heat transfer analyses. In this study 2-points bending tests were performed on the four specimens already tested for fire resistance to evaluate the residual bending strength of AU composite beam after fire accident. The same bending test was performed on the one fresh specimen having the same section and span of the specimens for practically comparative study.
4,000원
10.
2019.09 구독 인증기관 무료, 개인회원 유료
This study was carried out to examine the effect of the presence of non-structural walls in apartment buildings subjected to an earthquake. It was believed that the presence of non-structural walls, which has not been considered in the structural design process, was usually built together with structural walls and this led to significant damages to the apartment buildings in Pohang earthquake, 2017. In this study, a 22-story apartment building was selected and modeled to simulate the seismic behavior due to earthquakes. The story drift, performance point, and compressive strain in the walls were the main parameters to evaluate the seismic performance with the presence of non-structural walls.
4,000원
11.
2019.09 구독 인증기관 무료, 개인회원 유료
In this study, the retractable-roof spatial structure was chosen as the analytical model and a tuned mass damper (TMD) was installed in the analytical model in order to control the seismic response. The analysis model is mainly consisted of runway trusses (RT) and transverse trusses (TT), and the displacement response was analyzed by installing TMD on those trusses. The mass of the single TMD which is installed in the analytical model was set to 1% of the total structure mass and the total TMD mass ratio was set to be 8% or 6%. In addition, the mass of a single TMD was varied depending on the number of installations. As a result of analyzing the optimal number of installations of TMD, the displacement response was reduced in all cases compared to the case without TMD. Above all, the case with 8 TMDs was the most effective in reducing he displacement response. However, in this case, as the load on the upper structure of the retractable-roof spatial structure increases, the total mass ratio of TMD was maintained and the number of TMDs was increased to reduce the mass ratio of one TMD.
4,000원
12.
2019.09 구독 인증기관 무료, 개인회원 유료
In order to develop the compatible damping device in various vibration source, a hybrid wall-type damper combining slit and friction damper in parallel was developed. Cyclic loading tests and two-story RC reinforced frame tests were performed for structural performance verification. As a result of the 5-cyclic loading test according to KBC-2016 and low displacement cyclic fatigue test, The hybrid wall type damper increased its strength and the ductility was the same as that of the slit damper. In addition, As a result of the two-layer frame test, the reinforced frame had about twice the strength of the unreinforced frame, and the story drift ratio was satisfied to Life Safety Level.
4,000원