기계에 대한 새로운 학습 방법의 등장과 함께 기계학습을 이용한 영상 인식에 대한 관심이 높다. 스마트 기기를 이용한 영상 획득이 활발해지면서, 촬영한 영상 속 생물 개체의 이름을 자동으로 알려 주는 기계학습 기반의 영상인식 기술은 대중적인 호기심을 충족시킬 뿐 아니라 생물학 및 영상인식 연구자들에게도 매력적인 주제이다. 본 발표에서는 15종의 나비 영상으로부터 나비의 형태(shape) 및 색깔과 같은 영상정보를 개체 인식에 이용하는 기계학습 기반의 나비인식 방법을 소개 한다. 우선 나비의 형태나 색깔로부터 각 종을 대표해 기계의 학습 데이터로 사용될 특징(feature) 추출을 위한 몇 가지 방법들에 대해 알아본다. 그리고 추출된 특징들을 학습 데이터로 이용해 세 가지 대표적인 기계학습 방법(베이지안 분류기, 인공신경망, 서포트 벡터 머신)을 학습시키는 방법 및 테스트 데이터를 이용한 성능평가 방법을 소개한다.