Most of outdoor mobile robots have a suspension on each wheel in order to relieve the shock by ground obstacles and to improve the driving stability. Typically, in the actual operations, the suspensions have been used under a given set of conditions as all the damping and spring coefficients of the suspensions are fixed. However, it is necessary to readjust the coefficients of the suspensions according to surface conditions that may cause the unstable shaking of a robot body at high speed driving. Therefore, this paper is focused on the mobility analysis of an outdoor robot when the coefficients of suspensions (in particular, damping coefficients) are changed while driving on an uneven road surface. In this paper, a semi-active suspension with twelve damping coefficient levels was used and a small sized vehicle with the suspensions was employed to analyze the mobility dependent on a change of the damping coefficient. And the mobility was evaluated through driving experiments on a bumped slope.