간행물

로봇학회논문지 KCI 등재 The Journal of Korea Robotics Society

권호리스트/논문검색
이 간행물 논문 검색

권호

제11권 제2호 (통권 제40호) (2016년 5월) 8

1.
2016.05 서비스 종료(열람 제한)
This paper describes the effect of a robot cognitive rehabilitation program on cognitive functions for the elderly with mild cognitive impairment, and compares it with traditional cognitive therapy programs. Three experiment groups including cognition therapy group, robot cognitive rehabilitation group, and hybrid group have been sampled and one comparative group has been organized for this research. 32 old people whose ages are between 61 and 88 with mild cognitive impairment participated in the programs with an admission of W care hospital. According to the program results, the cognitive therapy program alone had shown a positive effect on the attention function, and the robot cognitive rehabilitation program alone had a positive effect on the total intelligence and memory function. However, a simultaneous operation with both programs had shown a positive effect on the three intelligence areas such as total, basic, and management quotients as well as attention and memory functions as subsidiary factors. This paper has verified that the proposed robot cognitive rehabilitation program makes a positive effect on a cognitive function and plays a complementary role with traditional cognitive therapy programs.
2.
2016.05 서비스 종료(열람 제한)
In this paper we present (1) analysis of imaging sonar measurement for two-view relative pose estimation of an autonomous vehicle and (2) bundle adjustment and 3D reconstruction method using imaging sonar. Sonar has been a popular sensor for underwater application due to its robustness to water turbidity and visibility in water medium. While vision based motion estimation has been applied to many ground vehicles for motion estimation and 3D reconstruction, imaging sonar addresses challenges in relative sensor frame motion. We focus on the fact that the sonar measurement inherently poses ambiguity in its measurement. This paper illustrates the source of the ambiguity in sonar measurements and summarizes assumptions for sonar based robot navigation. For validation, we synthetically generated underwater seafloor with varying complexity to analyze the error in the motion estimation.
3.
2016.05 서비스 종료(열람 제한)
This study proposes a multi-robot system, using multiple autonomous robots, to explore concrete structures and assist in their maintenance by sealing any cracks present in the structure. The proposed system employed a new self-localization method that is essential for autonomous robots, along with a visualization system to recognize the external environment and to detect and explore cracks efficiently. Moreover, more efficient crack search in an unknown environment became possible by arranging the robots into search areas divided depending on the surrounding situations. Operations with increased efficiency were also realized by overcoming the disadvantages of the infeasible logical behavioral model design with only six basic behavioral strategies based on distributed control-one of the methods to control swarm robots. Finally, this study investigated the efficiency of the proposed multi-robot system via basic sensor testing and simulation.
4.
2016.05 서비스 종료(열람 제한)
This paper focuses on the vibration analysis of planar cable–driven parallel robots on their configurations. Despite of many advantages of the cable robots, elasticity of the cables may cause the vibration at the existence of external disturbance, resulting in deterioration of positioning accuracy. According to the vibration theory, having high first order natural frequency can prevent resonance with low frequency disturbance from the surrounding environment. A series of simulations showed that choosing frame / end-effector shape and cable connection method affects robots’ natural frequency. For the precise simulation, the cables are modeled as linear springs and axial vibration of cables is mainly considered. Aspect ratios of the frame and end-effector are defined as non-dimensional parameters while their areas are fixed. It was shown that vibration analysis guides to design a planar cable robot in terms of high capacity to reduce vibration.
5.
2016.05 서비스 종료(열람 제한)
Most of outdoor mobile robots have a suspension on each wheel in order to relieve the shock by ground obstacles and to improve the driving stability. Typically, in the actual operations, the suspensions have been used under a given set of conditions as all the damping and spring coefficients of the suspensions are fixed. However, it is necessary to readjust the coefficients of the suspensions according to surface conditions that may cause the unstable shaking of a robot body at high speed driving. Therefore, this paper is focused on the mobility analysis of an outdoor robot when the coefficients of suspensions (in particular, damping coefficients) are changed while driving on an uneven road surface. In this paper, a semi-active suspension with twelve damping coefficient levels was used and a small sized vehicle with the suspensions was employed to analyze the mobility dependent on a change of the damping coefficient. And the mobility was evaluated through driving experiments on a bumped slope.
6.
2016.05 서비스 종료(열람 제한)
An electro-hydraulic actuator (EHA) is widely used in industrial motion systems and the increasing bandwidth of EHA position control is important issue. The model-inverse feedforward controller is known to extend the bandwidth of system. When the system has non-minimum phase (NMP) zeros, direct model inversion makes system unstable. To overcome this problem, an approximate model-inverse method is used. A representative approximate model inversion method is zero phase error tracking control (ZPETC). However, if zeros locate right half plane of z-plane, the approximate inverse model amplifies the high-frequency response. In this paper, to solve the problem of ZPETC, an adaptive model-inverse control is proposed. The adaptive algorithm updates feedforward term in real-time. The effectiveness of the proposed adaptive model-inverse position control strategy is verified by comparison with typical proportional-integral (PI) control and feedforward control by experiments. As a result, the proposed adaptive controller extends the bandwidth of EHA position control.
7.
2016.05 서비스 종료(열람 제한)
To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.
8.
2016.05 서비스 종료(열람 제한)
This paper presents a sensor-based cane mechanism for walking aid of the visually impaired person. We also describe an approach to decide properly the length of the specified cane mechanism. The cane mechanism has some sensors to identify the possibility of a collision between the cane user and an object and/or a person, and a signal processing unit that enables the user to recognize such a collision is attached in the mechanism. Thus, the walker using this cane can recognize in advance the possibility of such a collision in his walking process. Consequently, it is helpful for the visually impaired person to walk on a pedestrian road safely. The feature of the proposed cane mechanism and its availability have been shown through experimental works in a typical walking environment.