논문 상세보기

다중 생체신호를 이용한 신경망 기반 전산화 감정해석 KCI 등재

Neural-network based Computerized Emotion Analysis using Multiple Biological Signals

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/329959
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
감성과학 (Korean Journal of the science of Emotion & sensibility)
한국감성과학회 (The Korean Society For Emotion & Sensibility)
초록

감정은 학습능력, 행동, 판단력 등 삶의 많은 부분에 영향을 끼치므로 인간의 본질을 이해하는 데 중요한 역할을 한다. 그러나 감정은 개인이 느끼는 강도가 다르며, 시각 영상 자극을 통해 감정을 유도하는 경우 감정이 지속적으로 유지되지 않는다. 이러한 문제점을 극복하기 위하여 총 4가지 감정자극(행복, 슬픔, 공포, 보통) 시 생체신호(뇌전도, 맥파, 피부전도도, 피부 온도)를 획득하고, 이로부터 특징을 추출하여 분류기의 입력으로 사용하였다. 감정 패턴을 확률적으로 해석하여 다른 공간으로 매핑시켜주는 역할을 하는 Restricted Boltzmann Machine (RBM)과 Multilayer Neural Network (MNN)의 은닉층 노드를 이용하여 비선형적인 성질의 감정을 구별하는 Deep Belief Network (DBN) 감정 패턴 분류기를 설계하였다. 그 결과, DBN의 정확도(약 94%)는 오류 역전파 알고리즘의 정확도(약 40%)보다 높은 정확도를 가지며 감정 패턴 분류기로서 우수성을 가짐을 확인하였다. 이는 향후 인지과학 및 HCI 분야 등에서 활용 가능할 것으로 사료된다.

Emotion affects many parts of human life such as learning ability, behavior and judgment. It is important to understand human nature. Emotion can only be inferred from facial expressions or gestures, what it actually is. In particular, emotion is difficult to classify not only because individuals feel differently about emotion but also because visually induced emotion does not sustain during whole testing period. To solve the problem, we acquired bio-signals and extracted features from those signals, which offer objective information about emotion stimulus. The emotion pattern classifier was composed of unsupervised learning algorithm with hidden nodes and feature vectors. Restricted Boltzmann machine (RBM) based on probability estimation was used in the unsupervised learning and maps emotion features to transformed dimensions. The emotion was characterized by non-linear classifiers with hidden nodes of a multi layer neural network, named deep belief network (DBN). The accuracy of DBN (about 94 %) was better than that of back-propagation neural network (about 40 %). The DBN showed good performance as the emotion pattern classifier.

저자
  • 이지은(연세대학교 의과대학 의학공학교실) | Jee-Eun Lee
  • 김병남(연세대학교 의과대학 의학공학교실) | Byeong-Nam Kim
  • 유선국(연세대학교 의과대학 의학공학교실) | Sun-Kook Yoo 교신저자