감정은 학습능력, 행동, 판단력 등 삶의 많은 부분에 영향을 끼치므로 인간의 본질을 이해하는 데 중요한 역할을 한다. 그러나 감정은 개인이 느끼는 강도가 다르며, 시각 영상 자극을 통해 감정을 유도하는 경우 감정이 지속적으로 유지되지 않는다. 이러한 문제점을 극복하기 위하여 총 4가지 감정자극(행복, 슬픔, 공포, 보통) 시 생체신호(뇌전도, 맥파, 피부전도도, 피부 온도)를 획득하고, 이로부터 특징을 추출하여 분류기의 입력으로 사용하였다. 감정 패턴을 확률적으로 해석하여 다른 공간으로 매핑시켜주는 역할을 하는 Restricted Boltzmann Machine (RBM)과 Multilayer Neural Network (MNN)의 은닉층 노드를 이용하여 비선형적인 성질의 감정을 구별하는 Deep Belief Network (DBN) 감정 패턴 분류기를 설계하였다. 그 결과, DBN의 정확도(약 94%)는 오류 역전파 알고리즘의 정확도(약 40%)보다 높은 정확도를 가지며 감정 패턴 분류기로서 우수성을 가짐을 확인하였다. 이는 향후 인지과학 및 HCI 분야 등에서 활용 가능할 것으로 사료된다.
뇌와 근육은 상의 하달식 구조로 상지 운동 수행 과정에서 뇌파와 근전도 신호의 변화와 함께 기능적 연결성이 발생한다. 본 논문에서는 사용자가 상지 운동을 수행하였을 때의 뇌파와 근전도 신호에 대해 코히어런스 방법을 적용하 여 운동 의도 여부에 따른 뇌와 근육간의 연결성 차이를 규명하고자 한다. 상지 운동을 수행하는 과정에서 운동 피질 영역의 뇌파는 뮤 리듬(mu rhythm, 8~14 Hz)과 베타 리듬(beta rhythm, 15~30 Hz)에서 활성화 되며, 근전도 신호는 베타 리듬과 파이퍼 리듬(piper rhythm, 30~60 Hz)에서 활성화 된다. 뇌파와 근전도 신호간의 코히어런스 분석 결과 운동 의도를 포함한 능동 운동 수행 시 수동 운동을 수행하였을 때 보다 유의미한 차이로 높은 코히어런스 계수가 확인되었다. 이는 인지적 반응과 근육의 움직임 사이의 코히어런스 관계로 운동 의도가 포함된 상지 운동 수행 과정에서 의 뇌와 근육간의 연결성을 해석할 수 있었다. 운동 의도에 따른 뇌-근육간의 코히어런스 특징을 이용한다면 재활 기기 사용자의 운동 의도에 따라 피드백이 필요한 재활 훈련 시스템 설계에 도움이 될 수 있을 것으로 사료된다.