우리나라는 국토의 약 64%가 산림으로 구성되어 있으며, 2011년 기준 국내 산림면적은 6,443천ha이다. 산림청 자료에 따르면 국내 산림 바이오매스 발생량은 총 704만 ㎥으로 발생량 중 약 45%인 319만㎥이 제재목, 펄프, 보드용, 축산깔개, 버섯재배, 열병합 발전 등에 이용된 것으로 추정된다. 발생량의 55%인 385 만㎥는 현재에도 미이용 상태로서 이러한 산림 바이오매스 에너지의 이용을 위한 경제성과 효율성 확보를 위한 기술 개발이 시급한 실정이다. 바이오매스를 에너지로 변화하는 열화학적 변환 공정은 연소, 가스화, 급속 열분해 공정이 있으며, 이중 급속열분해 공정은 산소가 없는 조건하에서 500℃ 내외의 고온에서 짧은 시간 동안 반응시킨 후 연료로 전환하는 공정이다. 급속열분해 과정을 거치면 바이오매스는 분자 간 결합뿐만 아니라 C-C 결합, C-O 결합의 해체 등 화학적 전환이 일어나게 되며 최종적으로 액상 연료인 바이오 오일과 고형분인 바이오탄, 가스형태의 비응축성 가스를 생성한다. 바이오 오일은 보일러․터빈 등 발전용 연료뿐만 아니라 수송용 연료와 화학소재 등으로 활용이 가능한 잠재력을 갖고 있다. 따라서 공정 후 최종 생성물의 수율을 최적화하는 것은 공정의 효율성과 바이오 오일의 활용 가능성을 높이는데 중요한 역할을 한다. 더불어 바이오 오일의 물리적․화학적 특성을 분석함으로써 연료로서의 특성을 평가하고 소재화 활용 방안을 구축할 뿐만 아니라 더 나아가 화석연료를 대체할 에너지원으로써의 가치 및 발전 가능성을 가늠할 수 있다. 바이오 오일의 수율과 물리적․화학적 특성에 영향을 미치는 요인으로는 크게 공정 조건과 원료 조건으로 나눌 수 있다. 공정 조건은 반응온도, 반응기내 체류시간이 있으며 원료 조건은 바이오매스 함수율, 입자 크기, 바이오매스 내 화학 조성 등이 있다. 본 연구에서는 공정조건, 원료 조건 변화에 따른 바이오 오일의 물리적․화학적 특성을 연구하기 위하여 분사층 급속열분해 실험장치를 이용하여 폐목재 톱밥 급속열분해 실험을 수행하였다. 급속열분해 실험은 공정 조건인 반응온도, 체류시간, 투입속도와 원료 조건인 바이오매스 입자 크기를 각각 변화하며 실험을 수행하였으며, 각 조건에서 생산된 바이오 오일의 원소분석, 발열량, 수분함량, 점도, pH, GC-MS 분석을 수행하였다. 그리고 실험 결과를 바탕으로 바이오 오일의 연료적 특성 평가 및 화학소재 활용 방안에 대하여 고찰하였다.