논문 상세보기

식품중 미생물 위해성평가 방법론 연구 KCI 등재

Study on the Methodology of the Microbial Risk Assessment in Food

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/342901
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국식품위생안전성학회지 (Journal of Food Hygiene and Safety)
한국식품위생안전성학회 (Korean Society of Food Hygiene and Safety)
초록

Recently, it is continuously rising to concern about the health risk being induced by microorganisms in food such as Escherichia coli O157:H7 and Listeria monocytogenes. Various organizations and regulatory agencies including U.S.EPA, U.S.DA and FAO/WHO are preparing the methodology building to apply microbial quantitative risk assessment to risk-based food safety program. Microbial risks are primarily the result of single exposure and its health impacts are immediate and serious. Therefore, the methodology of risk assessment differs from that of chemical risk assessment. Microbial quantitative risk assessment consists of four steps; hazard identification, exposure assessment, dose-response assessment and risk characterization. Hazard identification is accomplished by observing and defining the types of adverse health effects in humans associated with exposure to foodborne agents. Epidemiological evidence which links the various disease with the particular exposure route is an important component of this identification. Exposure assessment includes the quantification of microbial exposure regarding the dynamics of microbial growth in food processing, transport, packaging and specific time-temperature conditions at various points from animal production to consumption. Dose-response assessment is the process characterizing dose-response correlation between microbial exposure and disease incidence. Unlike chemical carcinogens, the dose-response assessment for microbial pathogens has not focused on animal models for extrapolation to humans. Risk characterization links the exposure assessment and dose-response assessment and involve uncertainty analysis. The methodology of microbial dose-response assessment is classified as nonthreshold and threshold approach. The nonthreshold model have assumption that one organism is capable of producing an infection if it arrives at an appropriate site and organism have independence. Recently, the Exponential, Beta-poission, Gompertz, and Gamma-weibull models are using as nonthreshold model. The Log-normal and Log-logistic models are using as threshold model. The threshold has the assumption that a toxicant is produce by interaction of organisms. In this study, it was reviewed detailed process including risk value using model parameter and microbial exposure dose. Also this study suggested model application methodology in field of exposure assessment using assumed food microbial data(NaCl, water activity, temperature, pH, etc.) and the commercially used Food MicroModel^ⓡ. We recognized that human volunteer data to the healthy man are preferred rather than epidemiological data for obtaining exact dose-response data. But, the foreign agencies are studying the characterization of correlation between human and animal. For the comparison of differences to the population sensitivity; it must be executed domestic study such as the establishment of dose-response data to the Korean volunteer by each microbial and microbial exposure assessment in food.

저자
  • 김창민
  • 윤은경
  • 이효민
  • 최시내
  • 한지연
  • 김길생