The target in the design of base isolated structures is the selection of isolation system properties so that optimal performance is achieved among seismic levels and performance metrics. To withstand very rare ground motions, isolation system are frequently designed with significant strength or damping, and as a result such devices provide reduced isolation effect for more frequent seismic events. To investigate improvements to the design of isolated structures, a lot of research program is performed. Experimental investigations are presented to characterize smart base isolation capable of progressively exhibiting different hysteretic properties at different stages of response. Shear tests are conducted along the ISO standard, including harmonic characterizations tests. These tests included various input intensities, multi-component excitation. Behavior of the new smart base isolation system is compared with that of linear isolation systems with both nonlinear viscous and bilinear hysteretic energy dissipation mechanisms.