Ionic liquid (IL), asymmetric chemical consist of bulky cations and tiny-mobile anions, has been known as promising DNA extraction, separation and preservation agent due to its strong interaction with DNA. However, the interaction underlying DNA-IL complex forming mechanism remains to be elucidated. Herein, we employed three types of ILs (EMIM-Cl, BMIM-Cl, and OMIM-Cl) to investigate the changes of DNA morphology upon the alkyl chain length of ILs by using solid-state nanopore technology combining with atomic force microscopy (AFM). The results of AFM show the different forms of DNA, including aggregate, stretching, and bundling shapes in terms of EMIM-Cl, BMIM-Cl, and OMIM-Cl, respectively, assuming that the shape of DNA-IL complexes is responding to the alkyl chain length of ILs. In DNA translocation experiment. From the alteration of blockade current signals during the DNA pass through the nanopore, we estimate that the shapes of DNA are changed due to the treatment with BMIM-Cl, and OMIM-Cl, which not only increased the blockade current signals about 2-4 times in the case of OMIM, but also decrease the event showing translocation of DNA folding, implying that the alkyl chain affect to DNA stretching and bundling. The results indicate the length of hydrophobic alkyl group of IL plays an important role in determination of DNA morphology, providing their further application in nanopore technique for slowing DNA translocation speed toward discovering protein-DNA interaction or DNA sequencing.