Adsorption characteristics of toluene vapor, which is one of important source of volatile organic compounds (VOCs), by activated carbon were investigated using a fixed bed adsorption column. The operating parameters such as breakthrough curve, adsorption capacity, mass transfer zone (MTZ), and length of unused bed (LUB) were studied. The experimental results showed that the breakthrough time decreased with increasing inlet toluene concentration and gas flow rate. MTZ and LUB increased with the increase of inlet concentration, gas flow rate, and particle size of activated carbon. The adsorption capacity increased with the increase of inlet toluene concentration, while it decreased with increasing particle size. However, it was kept at constant value regardless of the increase of gas flow rate. Adsorption isotherm of toluene vapor could be represented by the Freundlich adsorption equation fairly well. From the adsorption experiments using some VOC gases such as toluene, xylene, butyl acetate. butanol and acetone, it was also found that the adsorption capacity was higher in the case of gas with higher boiling point and lower vapor pressure.