Characterization of Extrusion Parts for after Pre-aging Treatment in an Al-4.8Zn-1.3Mg Alloy
In this study, the effect of pre-aging treatment for inhibition of natural aging of Al-4.8Zn-1.3Mg alloy by extrusion process was investigated. Firstly, the as-cast microstructure of Al-4.8Zn-1.3Mg alloy billet and its evolution during homogenization(460℃, 4h + 510℃, 5h) were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), hardness analysis. The as-cast microstructures of Al-4.8Zn-1.3Mg alloy reveal Mg2Zn, Al5Cu, Al3Cu formed between dendrities. After homogenization, MgZn, Al4Cu, Al13Cu phases precipitated into the matrix. In addition, standard deviation of homogenized billet was improved than as-cast billet from 2.62 to 0.99. According to pre-aging(100℃, 1h) Al-4.8Zn-1.3Mg alloy by extrusion process, yield strength and tensile strength deviation improved more than condition by natural aging.