In this study, copper oxide, manganese oxide and zeolite, clays containing catalysts were prepared to remove hydrogen sulfide emitted in odor of industry. In order to change the heat treatment temperature, a catalyst was prepared 100 degrees from 600 degrees to 1,000 degrees. GC-MS was used to confirm the hydrogen sulfide removal performance. Although the removal performance produced at 600 degrees was maintained by and large, the removal performance decreased as the temperature increased. In particular, the catalyst manufactured at 900 and 1000 degrees had low removal performance. To find out the cause of the decrease in removal performance, the analytical devices XRD, BET, XRF were used. In order to confirm the properties of the catalyst before and after adsorption, SEM-EDS and CS were used. As a result of analyzing the Cu-Mn catalyst, it was confirmed that the material was adsorbed on the surface. To confirm the adsorbent material, SEM-Mapping was employed. And it was verified that the sulfur was adsorbed. Measuring the SEM-EDS 3Point, it was confirmed to be about 25.09%. Another test method CS analyzer (Carbon/Sulfur Detector) was also deployed. As a result of the test, sulfur was confirmed to be about 27.2%. So comparing the two sets of data, it was verified that sulfur was adsorbed on the surface.
리튬이온전지는 친환경적이고 우수한 전지 성능덕분에 배터리 산업의 핵심으로 자리 잡았으며, 이에 따라 수요가 급증하고 있다. 그러나, 리튬이온전지의 수요증가는 리튬과 광물자원들의 공급문제를 초래하며, 수명이 다한 폐 리튬이온전지의 폐기방안이 아직 마련되지 않아 환경적 문제를 발생시킨다. 이러한 문제를 해결하기 위해 폐 리튬이온전지를 재활용하는 연구가 진행되고 있으며, 그 중에서도 폐 리튬이온전지에서 폐 양극 소재를 추출하여 재활용하는 다이렉트 리사이클링 연구가 주목받고 있다. 그러나, 폐 양극 소재는 오랜 충/방전으로 인해 구조적 붕괴(열화)가 발생한 상태로, 새로운 리튬이온전지에 적용을 위해서는 리튬이온전지 사용 전의 구조 즉, 층상구조로의 회복이 필요하다. 본 연구에서는 이를 위해 폐 양극 소재(LiNi0.6C0.2Mn0.2O2)가 열역학적으로 층상구조를 형성하는 온도를 분석하기 위해 700 ºC, 800 ºC, 900 ºC 범위에서 XRD를 통해 구조분석을 진행하였다. 폐 양극 소재는 700 ºC와 900 ºC 대비 800 ºC 열처리 시 1.44로 가장 높은 I003/I104 value를 보였다. 또한 800 ºC 열처리 시 0.1 C 기준 비 용량이 171.3 mAh/g으로 가장 높은 것을 확인하였다. 이를 통해 우리는 열역학적으로 층상구조를 형성하는 온도를 800 ºC로 도출하였으며 폐 양극 소재의 구조를 성공적으로 복원하였다.
본 연구는 대기 중 장기간 노출로 인해 열화된 Ni-rich NCM811(LiNi₀.₈Co₀.₁Mn₀.₁O₂) 양극 소재의 계면 저항 증가 및 전기화학적 성능 저하 문제를 해결하기 위해, 물리적 열처리 방법을 제안하였다. NCM811 양극 소재는 대기 중 수분 및 이산화탄소와의 반응에 의해 표면에 불순물이 형성되기 쉬우며, 이는 고체전해질과의 계면 저항을 증가시켜 전고 체전지 시스템에서의 성능 저하를 초래한다. 이러한 문제를 해결하기 위해, 열화된 NCM811 양극 소재를 O₂ 분위기 에서 열처리하여 표면의 불순물을 효과적으로 제거하고 양극 표면의 전도성을 향상시킴으로써, 양극-고체전해질 간의 계면 저항을 현저히 감소시키는 결과를 얻었다. SEM, XRD, ICP 분석을 통해 열화된 NCM811 양극 소재의 표면 특성 변화를 분석하였으며, 열처리 후 NCM811 소재의 계면 특성이 개선됨에 따라 전기화학적 성능 또한 상용 NCM811 소재와 유사한 수준으로 회복되는 것을 확인하였다. 특히, O₂ 분위기의 물리적 열처리 방법은 Ni-rich NCM811 양극 소재의 열화를 효과적으로 억제하고 고체전해질과의 계면 접촉을 개선하여, 황화물계 전고체전지의 전기화학적 성능 을 획기적으로 향상시킬 수 있는 유망한 기술임을 입증하였다. 이러한 결과는 전고체전지 상용화를 위한 핵심 전략으 로 적용될 수 있을 것으로 기대된다.
Maraging steel has excellent mechanical properties resulting from the formation of precipitates within the matrix through aging treatment. Maraging steel fabricated by the laser powder bed fusion (LPBF) process is suitable for applications including precise components and optimized design. The anisotropic characteristic, which depends on the stacking direction, affects the mechanical properties. This study aimed to analyze the influence of anisotropy on the wear behavior of maraging steel after aging treatment. The features of additive manufacturing tended to disappear after heat treatment. However, some residual cellular and dendrite structures were observed. In the wear tests, a high wear rate was observed on the building direction plane for all counter materials. This is believed to be because the oxides formed on the wear track positively affected the wear characteristics; meanwhile, the bead shape in the stacking direction surface was vulnerable to wear, leading to significant wear.
본 연구는 목재 데크에 사용되는 수입 목재들의 열처리 특성을 조사하기 위하여 수행되었다. 꾸마루, 꾸메아, 말라스, 바스랄로커스, 아피통, 이페, 자토바, 켐파스를 대상으로 열처리 목재를 제조한 후 처리조건에 따른 재색변화 및 경도를 조사하였다. 총 9가지 처리조건(처리온도: 170, 190, 210 ℃, 처리시간: 1, 3, 5 hours)에서 열처리 시편을 제조하였으며 2주간 20℃, 60% 상대습도 조건에서 조습한 후 재색과 쇼어 D 경도를 측정하였다. 처리온도와 처리시간이 증가함에 따라 목재의 중량은 감소하였고 재색은 짙어지는 것으로 나타났다. 중량 감소가 가장 적은 수종은 꾸마루로, 210℃에서 5시간 열처리 시 약 12%의 중량 감소를 보였다. 반면, 중량 감소가 가장 많은 수종은 아피통으로, 약 23%의 중량 감소를 나타냈다. 재색 변화는 처리온도 및 처리시간이 증가함에 따라 가속되었지만 210℃에서 3시간 이상의 열처리에서는 색상차가 크지 않았기 때문에 최종 재색에 거의 도달한 것으로 판단되었다. 수종에 따른 차이는 존재하지만 열처리를 통해서 얻을 수 있는 색상차는 대략 30 이하인 것으로 나타났다. 쇼어 D 경도는 170℃, 1시간 열처리한 일부 시편의 경우 증가하기도 하였으나 온도와 시간의 증가에 따라 감소하였다. 최대 열처리 조건에서 말라스는 13%, 켐파스는 43%의 쇼어 D 경도 감소를 보여 수종의 특성에 따라 상당한 차이가 있는 것으로 판단된다.
Salmonella spp. 11 strains에 대해 저온 열처리(50oC) 3, 6, 9분 후 MIC값을 측정하여 항생제 내성을 알아보았다. Chloramphenicol에 대해 대조군과 열처리한 strains 대부분 에서 감수성(S)이 있는 것으로 나타났고, 열처리한 strains 의 MIC값은 대조군과 비교하였을 때 유지되거나 감소하 였다. Ciprofloxacin에 대해 대조군과 열처리한 strains는 대 부분 감수성(S)이 있거나 중간(I)을 나타냈다. Tetracycline 은 모든 strains에서 감수성(S)이 있는 것으로 나타났으며, S. Gaminara BAA 711에 대해 열처리 후 MIC값이 증가 하였다. Gentamicin에 대해 대조군 strains들에서 감수성을 나타낸 strains가 3 strains, 중간을 나타낸 strains 2 strains, 내성을 가진 strains가 6 strains였으며, 이 중 S. Heidelberg ATCC 8326는 MIC값을 측정했을 때 대조군에서 MIC값 이 8 μg/mL로 MIC break point가 중간이었으나, 3분과 9 분 열처리 후 MIC값이 16 μg/mL로 증가하여 break point 가 내성을 나타냈다. 본 실험결과 Salmonella spp. 11 strains 에 대해서 저온 열처리 후 열내성 효과에 의한 항생제 내성을 알아봤을 때 ciprofloxacin에서 S. Montevideo BAA 710을 3, 6분 열처리한 경우, gentamicin에서 S. Enteritidis 109 D1을 3분 처리한 경우와 S. Heidelberg ATCC 8326 을 3, 9분 처리한 경우, tetracycline에서 S. Gaminara BAA 711을 6, 9분 처리한 경우 MIC값이 증가하였다. 후속 연 구를 통해 Salmonella spp. strains에 대해 열처리 후 열내 성 효과를 나타내는 병원성 유전자의 특성에 대한 지속적 인 연구가 필요하다.
In this study, we designed and manufactured a large angular contact ball bearing (LACBB) with low deformation using JIS-SUJ2 steel and analyzed changes in its structural characteristics and chemical composition upon heat treatment. The bearing was produced by hot forging and heat treatment including a quenching and tempering (Q/T) process, and its properties were analyzed using 4 mm thick specimens. A difference in the size distribution of the carbide in the outer and inner parts of the bearing was observed and it was confirmed that large and non-uniform carbide was distributed in the inner part of the bearing. After heat treatment, the hardness value of the outer part increased from 13.4 HRC to 61 HRC and the inner part increased from 8.0 HRC to 59.7 HRC. As a result of X-ray diffraction (XRD) measurements, the volume fraction of the retained austenite contained in the outer part was calculated to be 3.5~4.8 % and the inner part was calculated to be 3.6~5.0 %. The surface chemical composition and the content of chemical bonds were quantified through X-ray photoelectron spectroscopy (XPS), and a decrease in C=C bonds and an increase in Fe-C bonds were confirmed.
This study evaluated the effects of heat treatment on gastrodin and gastrodigenin content, and antioxidant activities, in Gastrodia elata Blume. Gastrodin and gastrodigenin content was analyzed post-method validation, and antioxidant activity evaluation, including assessing total polyphenol content, DPPH, and ABTS radical scavenging activities, was done. The validation of the analysis method demonstrated excellent linearity. The limits of quantification of gastrodin and gastrodigenin were 2.89 and 3.47 μg/mL, respectively. Moreover, the results of intra- and inter-day precision analysis demonstrated relative standard deviation values, within 5%. The recovery rates for gastrodin and gastrodigenin were 97.22~98.85 and 97.99~99.91%, respectively, indicating good accuracy. Under different heat treatment conditions, gastrodin and gastrodigenin content significantly increased (p<0.05), ranging from 91.15 to 310.27 and 559.66 to 830.02 mg/100 g DW, respectively. Additionally, the total polyphenol content exhibited a significant (p<0.05) increasing trend, ranging from 1,444 to 1,798 mg/100 g DW, as the temperature and time of heat treatment increased. The DPPH and ABTS radical scavenging abilities demonstrated an increasing trend at 120℃ during heat treatment. These research findings are expected to enhance our understanding of the changes in gastrodin and gastrodigenin content, and antioxidant effects in Gastrodia elata Blume during heat treatment.
The effects of annealing on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500oC causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 μm and from 2.9 to 6.3 μm, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.
The purpose of this study was to analyze microstructural changes and evaluate the mechanical properties of TWIP steel subjected to variations in heat treatment, in order to identify optimal process conditions for enhancing the performance of TWIP steel. For this purpose, a homogenization heat treatment was conducted at 1,200 °C for 2 h, followed by hot rolling at temperature exceeding 1,100 °C and cold rolling. Annealing heat treatment is achieved using a muffle furnace in the range of 600 °C to 1,000 °C. The microstructure characterization was performed with an optical microscope and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness, tensile test, and ECO index (UTS × Elongation). The specimens annealed at 900 °C and 1,000 °C experienced a significant decrease in hardness and strength due to decarburization. Consequently, the decarburization phenomenon is closely related to the heat treatment process and mechanical properties of TWIP steel, and the effect of the microstructure change during annealing heat treatment.
AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9 × 10-4 Ω ‧ cm and about 1.0 × 10-4 Ω ‧ cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 °C.
Yttria-stabilized zirconia (YSZ) has a low thermal conductivity, high thermal expansion coefficient, and excellent mechanical properties; thus, it is used as a thermal barrier coating material for gas turbines. However, during long-time exposure of YSZ to temperatures of 1200oC or higher, a phase transformation accompanied by a volume change occurs, causing the YSZ coating layer to peel off. To solve this problem, YSZ has been doped with trivalent and tetravalent oxides to obtain coating materials with low thermal conductivity and suppressed phase transformation of zirconia. In this study, YSZ is doped with trivalent oxides, Nd2O3, Yb2O3, Al2O3, and tetravalent oxide, TiO2, and the thermal conductivity of the obtained materials is analyzed according to the composition; furthermore, the relative density change, microstructure change, and m-phase formation behavior are analyzed during long-time heat treatment at high temperatures.
This study aimed to investigate the effects of antioxidant and anti-inflammatory activities of heat-killed lactic acid bacteria (LAB) produced under different temperature conditions. Regarding probiotic properties, Limosilactobacillus fermentum SMF743 and Lactiplantibacillus plantarum SMF796 isolated from kimchi showed strong acid and bile salt resistance, adhesion activity onto HT-29 cells, and antimicrobial activity against pathogenic bacteria. Based on the results of thermal death time and temperature, heat-killed LAB cells (1 mg/mL) were prepared by heating at 70oC (180 min), 80oC (120 min), 100oC (30 min), and 121oC (15 min). The heat-killed SMF743 and SMF796 showed significantly higher DPPH and ABTS radical scavenging activities than live cells (p<0.05). The heat-killed SMF743 and SMF796 at 70oC or 121oC revealed stronger DPPH and ABTS radical scavenging activities and inhibition of nitric oxide production than those at 80oC or 100oC. Furthermore, heat-killed SMF743 and SMF796 at 121oC significantly reduced the gene expression levels of tumor necrosis factor-, inducible nitric oxide synthase, and cyclooxygenase- 2 up to 53.33%, 58.67%, and 83.67%, respectively, in lipopolysaccharide (LPS)-induced RAW264.7 cells (p<0.05). These results suggest that heat-killed L. fermentum SMF743 and L. plantarum SMF796 can be used as natural antioxidants and anti-inflammatory agents.
Magnesium alloy is the lightest practical metal. It has excellent specific strength and recyclability as well as abundant reserves, and is expected to be a next-generation structural metal material following aluminum alloy. This paper investigated the possibility of thin plate fabrication by applying a overheating treatment to the melt drag method, and investigating the surface shape of the thin plate, grain size, grain size distribution, and Vickers hardness. When the overheating treatment was applied to magnesium alloy, the grains were refined, so it is expected that further refinement of grains can be realized if the overheating treatment is applied to the melt drag method. By applying overheating treatment, it was possible to fabricate a thin plate of magnesium alloy using the melt drag method, and a microstructure with a minimum grain size of around 12 μm was obtained. As the overheating treatment temperature increased, void defects increased on the roll surface of the thin plate, and holding time had no effect on the surface shape of the thin plate. The fabricated thin plate showed uniform grain size distribution. When the holding times were 0 and 30 min, the grain size was refined, and the effect of the holding time became smaller as the overheating treatment temperature increased. As the overheating temperature becomes higher, the grain size becomes finer, and the finer the grain size is, the higher the Vickers hardness.
A spin coating process for RRAM, which is a TiN/TiO2/FTO structure based on a PTC sol solution, was developed in this laboratory, a method which enables low-temperature and eco-friendly manufacturing. The RRAM corresponds to an OxRAM that operates through the formation and extinction of conductive filaments. Heat treatment was selected as a method of controlling oxygen vacancy (VO), a major factor of the conductive filament. It was carried out at 100 oC under moisture removal conditions and at 300 oC and 500 oC for excellent phase stability. XRD analysis confirmed the anatase phase in the thin film increased as the heat treatment increased, and the Ti3+ and OH- groups were observed to decrease in the XPS analysis. In the I-V analysis, the device at 100 oC showed a low primary SET voltage of 5.1 V and a high ON/OFF ratio of 104. The double-logarithmic plot of the I-V curve confirmed the device at 100 oC required a low operating voltage. As a result, the 100 oC heat treatment conditions were suitable for the low voltage driving and high ON/OFF ratio of TiN/TiO2/FTO RRAM devices and these results suggest that the operating voltage and ON/OFF ratio required for OxRAM devices used in various fields under specific heat treatment conditions can be compromised.
Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.
Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 oC in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 oC. Heating the material to higher temperatures, up to 400 oC, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/ Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 oC. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.
In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 °C on the microstructure and hardness has been investigated.