본 연구는 대기 중 장기간 노출로 인해 열화된 Ni-rich NCM811(LiNi₀.₈Co₀.₁Mn₀.₁O₂) 양극 소재의 계면 저항 증가 및 전기화학적 성능 저하 문제를 해결하기 위해, 물리적 열처리 방법을 제안하였다. NCM811 양극 소재는 대기 중 수분 및 이산화탄소와의 반응에 의해 표면에 불순물이 형성되기 쉬우며, 이는 고체전해질과의 계면 저항을 증가시켜 전고 체전지 시스템에서의 성능 저하를 초래한다. 이러한 문제를 해결하기 위해, 열화된 NCM811 양극 소재를 O₂ 분위기 에서 열처리하여 표면의 불순물을 효과적으로 제거하고 양극 표면의 전도성을 향상시킴으로써, 양극-고체전해질 간의 계면 저항을 현저히 감소시키는 결과를 얻었다. SEM, XRD, ICP 분석을 통해 열화된 NCM811 양극 소재의 표면 특성 변화를 분석하였으며, 열처리 후 NCM811 소재의 계면 특성이 개선됨에 따라 전기화학적 성능 또한 상용 NCM811 소재와 유사한 수준으로 회복되는 것을 확인하였다. 특히, O₂ 분위기의 물리적 열처리 방법은 Ni-rich NCM811 양극 소재의 열화를 효과적으로 억제하고 고체전해질과의 계면 접촉을 개선하여, 황화물계 전고체전지의 전기화학적 성능 을 획기적으로 향상시킬 수 있는 유망한 기술임을 입증하였다. 이러한 결과는 전고체전지 상용화를 위한 핵심 전략으 로 적용될 수 있을 것으로 기대된다.
리튬이온전지는 친환경적이고 우수한 전지 성능덕분에 배터리 산업의 핵심으로 자리 잡았으며, 이에 따라 수요가 급증하고 있다. 그러나, 리튬이온전지의 수요증가는 리튬과 광물자원들의 공급문제를 초래하며, 수명이 다한 폐 리튬이온전지의 폐기방안이 아직 마련되지 않아 환경적 문제를 발생시킨다. 이러한 문제를 해결하기 위해 폐 리튬이온전지를 재활용하는 연구가 진행되고 있으며, 그 중에서도 폐 리튬이온전지에서 폐 양극 소재를 추출하여 재활용하는 다이렉트 리사이클링 연구가 주목받고 있다. 그러나, 폐 양극 소재는 오랜 충/방전으로 인해 구조적 붕괴(열화)가 발생한 상태로, 새로운 리튬이온전지에 적용을 위해서는 리튬이온전지 사용 전의 구조 즉, 층상구조로의 회복이 필요하다. 본 연구에서는 이를 위해 폐 양극 소재(LiNi0.6C0.2Mn0.2O2)가 열역학적으로 층상구조를 형성하는 온도를 분석하기 위해 700 ºC, 800 ºC, 900 ºC 범위에서 XRD를 통해 구조분석을 진행하였다. 폐 양극 소재는 700 ºC와 900 ºC 대비 800 ºC 열처리 시 1.44로 가장 높은 I003/I104 value를 보였다. 또한 800 ºC 열처리 시 0.1 C 기준 비 용량이 171.3 mAh/g으로 가장 높은 것을 확인하였다. 이를 통해 우리는 열역학적으로 층상구조를 형성하는 온도를 800 ºC로 도출하였으며 폐 양극 소재의 구조를 성공적으로 복원하였다.