Evaluation of Advanced Oxidation Process(AOP) as a Pretreatment Process of Biological Activated Carbon in Drinking Water Treatment
The advanced oxidation process (AOP) using ozone combined with hydrogen peroxide and ultraviolet treatment were evaluated for biodegradable dissolved organic carbon (BDOC) formation and dissolved organic carbon (DOC) removal. Oxidation treatment were conducted alone or combination with ozone, hydrogen peroxide and ultraviolet processes.
Ozone dosage of ozone process was varied from 0.5㎎/ℓ·min to 5㎎/ℓ·min. Ozone/hydrogen peroxide process was done using 20㎎/ℓ of hydrogen peroxide concentration. Ozone/ultraviolet process was irradiated with 12mW/㎠ of density and 254nm. Ozone dosage was varied from 0.5㎎/ℓ·min to 5㎎/ℓ·min at the ozone/hydrogen peroxide and ozone/ultraviolet processes too. Contact time of all the process was 20 minutes. Oxidation treatment were performed on microfiltration effluent samples.
BDOC formation was reached to an optimum at ozone dosage of 1.5㎎/ℓ·min in the ozone/hydrogen peroxide process and 1㎎/ℓ·min in ozone/ultraviolet process, after which BDOC formation was decreased at higher ozone dosages. But BDOC formation was increased with ozone dosages increasing in ozone process. The efficiency of DOC removal was higher AOPs than ozone process. Ozone/ultraviolet proces was the highest for DOC removal efficiency in each process. THMFP removal efficiency by ozone/ultraviolet process was higher than that by each of ozone process and ozone/hydrogen peroxide process.