Pyrolysis Reaction for the Treatment of Hazardous Halogenated Hydrocarbon Waste
The pyrolysis reactions of atomic hydrogen with chloroform were studied in a 4 cm i.d, tubular flow reactor with low flow velocity (518 ㎝/sec) and a 2.6 ㎝ i.d. tubular flow reactor with high flow velocity (1227 ㎝/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but did not depend on the flow rate of hydrogen atom.
A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm i.d. reactor was to be 8.1 × 10 exp (-14) ㎤/molecule-sec and 3.8 × 10 exp (-15) ㎤/molecule-sec, and the deviations of computer model from experimental results were 9% and 12%, for the each reaction time of 0.028 sec and 0.072 sec, respectively.