Porous graphene oxide (P-GO) was successfully synthesized by using a simple glucose mediated hydrothermal method form prepared graphene oxide (GO). Then the P-GO was characterized by X-ray Powder Diffraction (XRD), Fourier-Transform Infrared (FITR), Raman, Brunauer–Emmett–Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) analysis to determine the crystallinity, surface functionality, surface defect, surface area and porous nature of the material. For the comparative properties studies with P-GO, the synthesised GO was also characterised using the aforementioned analytical techniques. The formation of macroporous 2D sheet-like structure of P-GO with pore size diameters of 0.2–0.5 μm was confirmed by FESEM and TEM images. The surface area of P-GO was found to be 1272 m2/ g which is much higher compare to GO (i.e., 172 m2/ g) because of porous structure. P-GO was used for the adsorptive removal of F− ions from water using batch adsorption method. The highest adsorption occurs in the pH range of 5–7 with maximum adsorption capacity of 1272 mg/g. The experimental data revealed that the adsorption process obeys Langmuir monolayer isotherm model. The kinetic analysis revealed that the adsorption procedure is extremely rapid and mainly fit to the Pseudo-second-order (PSO) model. The effect of co-existing ions on fluoride adsorption capacity by P-GO decreases in the following order: PO4 3− > CO3 2− > SO4 2− > HCO3 − > NO3 − > Cl−. The mechanism of adsorption of fluoride onto the P-GO surface includes electrostatic interactions and hydrogen bonding.
Modification of the surface of raw activated carbon using chemical solvents can significantly improve the adsorption performance of activated carbon. Triethylenetetramine is one of the most important chemical solvents used to modify raw activated carbon for formaldehyde removal indoor. We conducted the liquid impregnation experiments at different initial concentrations, temperatures, adsorbent dosage and time ranges to fully investigate the adsorption of triethylenetetramine on the surface of raw activated carbon for modification. We found that the Langmuir isotherm model and pseudo-first-order kinetic model fit quite well with the experimental data and the R2 are 0.9883 and 0.9954, respectively. The theoretical maximum adsorption capacity is 166.67 mg/g. The change in Gibbs free energy (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0) were also calculated to study the direction and driving force of the liquid adsorption process. In order to understand the adsorption process at the molecular level, a new activated carbon model based on the actual physical and chemical properties of activated carbon was carefully established in the Materials Studio to simulate the liquid-phase adsorption. The pore structure, elemental composition, functional group content, density, pore volume, and porosity of the activated carbon model converge close to the actual activated carbon and the adsorption isotherms obtained from the simulation agree well with the experimental results. The results show that the adsorption of triethylenetetramine on activated carbon is a spontaneous, endothermic and monolayer physical adsorption process.
The process of carbonization followed by a high-temperature halogenation removal of radionuclides is a promising approach to convert low-radioactivity spent ion-exchange (IE) resins into freereleasable non-radioactive waste. The first step of this process is to convert spent ion-exchange resins into the carbon granules that are stable under high-temperature and corrosive-gas flowing conditions. This study investigated the kinetics of carbonization of cation exchange resin (CER) and the changes in structures during the course of carbonization to 1,273 K. Both of model-free and modelfitted kinetic analysis of mixed reactions occurring during the course of carbonization were first conducted based on the non-isothermal TGAs and TGA-FTIR analysis of CER to 1,272 K. The structural changes during the course of carbonization were investigated using the high-resolution FTIR and C-13 NMR of CER samples pyrolyzed to the peak temperature of each reaction steps established by the kinetic analysis. Four individual reaction steps were identified during the course of carbonization to 1,273 K. The first and the third steps were identified as the dehydration and the dissociation of the functional group of —SO3-H+ into SO2 and H2O, respectively. The second and the fourth steps were identified as the cleavage of styrene divinyl benzene copolymer and carbonization of pyrolysis product after the cleavage, respectively. The temperature and time positions of the peaks in the DTG plot are nearly identical to those of the peaks of the Gram Schmidt intensity of FTIR. The structural changes in carbonization identified by high-resolution FTIR and DTG are in agreement with those by C-13 NMR. The results of a detailed examination of the structural changes according to NMR and FTIR were in agreement with the pyrolysis gas evolution characteristics as examined by TGA-FTIR.
The present study focuses on the adsorption of organic matter mainly COD from pretreated landfill leachate of Lamdeng Khunou Solid Waste Management Plant, Manipur, India through the employment of H3PO4 treated activated carbon derived from Parkia speciosa (Petai) pods (PPAC). The adsorbent was analyzed for morphological and surface characterization by various methods including, Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Analysis (EDAX), Brunauer–Emmett–Teller (BET) surface area and pH at zero point charges ( pHZPC). The impacts of adsorption processes such as initial pH, temperature, equilibrium time and dose of adsorbent were considered to evaluate the performance of PPAC. At 20 °C, PPAC showed maximum COD removal of 93% within 90 min contact time, at optimum pH 2. Adsorption kinetic was able to explain by Lagergren’s pseudo-second-order equation and intraparticular diffusion models suggesting the combined behavior of both the physical and chemical adsorption of COD on PPAC. Through thermodynamics and isotherm studies, the adsorption of COD on PPAC is revealed to be exothermic with maximum monolayer coverage of 200 mg COD/g PPAC. The performance of the PPAC adsorbent is also compared with other existing reported adsorbents for treating leachate.
This study reassess safety margin of the current Peak Cladding Temperature (PCT) limit of dry storage in terms of hydrogen migration by predicting axial hydrogen diffusion throughout dry storage with respect to wet storage time and average burnup. Applying the hydride nucleation, growth, and dissolution model, an axial finite difference method code for thermal diffusion of hydrogen in zirconium alloy was developed and validated against past experiments. The developed model has been implemented in GIFT – a nuclear fuel analysis code developed by Seoul National University. Various discharge burnups and wet storage time relevant to spent fuel characteristics of Korea were simulated. The result shows that that the amount of hydrogen migrated towards the axial end during dry storage for reference PWR spent fuel is limited to ~50 wppm. This result demonstrates that the current PCT margin is sufficient in terms of hydrogen migration.
The present study investigated effects of antifungal and carboxylesterase inoculant on rumen fermentation with different rumen pH. Corn silage was treated without inoculant (CON) and with a mixed Lactobacillus brevis 5M2 and L. buchneri 6M1 (MIX). Rumen fluid was collected from two cannulated Hanwoo heifers before morning feeding (high rumen pH at 6.70) and 3 h after feeding (low rumen pH at 6.20). Dried corn silage was incubated in the rumen buffer (rumen fluid + anaerobic culture medium at 1:2 ratio) for 48 h at 39oC. Eight replications for each treatment were used along with two blanks. Both in a high and a low rumen pH, MIX silages presented higher (p<0.05) the immediately degradable fraction, the potentially degradable fraction, total degradable fraction, and total volatile fatty acid (VFA) than those of CON silages. Incubated corn silages in a low rumen pH presented lower (p<0.05) total degradable fraction, ammonia-N, total VFA (p=0.061), and other VFA profiles except acetate and propionate, than those in a high rumen pH. The present study concluded that application of antifungal and carboxylesterase inoculant on corn silage could improve degradation kinetics and fermentation indices in the rumen with high and low pH conditions.
Chlorination and UV illumination are being widely applied to inactivate a number of pathogenic microbials in the environment. Here, we evaluated the inactivation efficiency of individual and combined treatments of chlorination and UV under various aqueous conditions. UV dosage was required higher in waste water than in phosphate buffer to achieve the similar disinfecting efficiency. Free chlorine generated by electrolysis of waste water was abundant enough to inactivate microbials. Based on these, hybrid system composed of sequential treatment of electrolysis-mediated chlorination and UV treatment was developed under waste water conditions. Compared to individual treatments, hybrid system inactivated bacteria (i.e., E. coli and S. typhimurium) and viruses (i.e., MS-2 bacteriophage, rotavirus, and norovirus) more efficiently. The hybrid system also mitigated the photo re-pair of UV-driven DNA damages of target bacteria. The combined results suggested the hybrid system would achieve high inactivation efficiency and safety on various pathogenic microbials in wastewater.
The present work is aimed at evaluating the kinetics and dynamic adsorption of methylene blue by CO2- activated carbon gels. The carbon gels were characterized by textural properties, thermal degradation and surface chemistry. The result shows that the carbon gels are highly microporous with surface area of 514 m2/g and 745 m2/g for resorcinol-to-catalyst ratios of 1000 (AC1) and 2000 (AC2), respectively. The kinetics data could be described by pseudo-first-order model, with a longer duration to attain equilibrium due to restricted pore diffusion as concentration increases. Also, AC1 exhibits insignificant kinetics with fluctuating adsorption with time at concentrations of 20 and 25 mg/L. However, AC1 reveals a better performance than AC2 in dynamic adsorption due to concentration gradient for molecules diffusion to active sites. The applicability of Yoon–Nelson and Thomas models indicates that the dynamic adsorption is controlled by external and internal diffusion.
Global fitting functions for Fe-selective chlorination in ilmenite(FeTiO2) and successive chlorination of beneficiated TiO2 are proposed and validated based on a comparison with experimental data collected from the literature. The Fe-selective chlorination reaction is expressed by the unreacted shrinking core model, which covers the diffusion-controlling step of chlorinated Fe gas that escapes through porous materials of beneficiated TiO2 formed by Fe-selective chlorination, and the chemical reaction-controlling step of the surface reaction of unreacted solid ilmenite. The fitting function is applied for both chemical controlling steps of the unreacted shrinking core model. The validation shows that our fitting function is quite effective to fit with experimental data by minimum and maximum values of determination coefficients of R2 as low as 0.9698 and 0.9988, respectively, for operating parameters such as temperature, Cl2 pressure, carbon ratio and particle size that change comprehensively. The global fitting functions proposed in this study are expressed simply as exponential functions of chlorination rate(X) vs. time(t), and each of them are validated by a single equation for various reaction conditions. There is therefore a certain practical merit for the optimal process design and performance analysis for field engineers of chlorination reactions of ilmenite and TiO2.
The impregnation of solid foods into the surrounding hypotonic or hypertonic solution was explored as a method to infuse NaCl in pork loin cube without altering its matrix. Mass transfer kinetics using a diffusive model as the mathematical model for moisture gain/loss and salt gain and the resulting textural properties were studied for the surrounding solutions of NaCl 2.5, 5.0, 10.0 and 15% (w/w). It was possible to access the effects of brine concentration on the direction of the resulting water flow, quantify water and salt transfer, and confirm tenderization effect by salt infusion. For brine concentrations up to 10% it was verified that meat samples gained water, while for processes with 15% concentration, pork loin cubes lost water. The effective diffusion coefficients of salt ranged from 2.43×10-9 to 3.53×10-9 m2/s, while for the values of water ranged from 1.22×10-9 to 1.88×10-9 m2/s. The diffusive model was able to represent well salt gain rates using a single parameter, i.e. an effective diffusion coefficient of salt through the meat. However, it was not possible to find a characteristic effective diffusion coefficient for water transfer. Within the range of experimental conditions studied, salt-impregnated samples by 5% (w/w) brine were shown with minimum hardness, chewiness and shear force.
Modified pitch A (MPA) and modified pitch B (MPB) were prepared by oxidative polymerization and thermal polycondensation reaction with refined pitch as the raw material, respectively. The toluene soluble components (TS-1 and TS-2) were obtained by solvent extraction from MPA and MPB, separately. The Flynn-Wall-Ozawa method and Kissinger-Akahira- Sunose method were used to calculate the pyrolysis activation energy of TS. The Satava- Sestak method was used to investigate the pyrolysis kinetic parameters of TS. Moreover, the optical microstructure of the thermal conversion products (TS-1-P and TS-2-P) by calcination shows that TS-1-P has more contents of mosaic structure and lower contents of fine fiber structure than TS-2-P. The research result obtained by a combination of X-ray diffraction and the curve-fitting method revealed that the ratios of ordered carbon crystallite (Ig) in TS-1-P and TS-2-P were 0.3793 and 0.4417, respectively. The distributions of carbon crystallite on TS-1-P and TS-2-P were calculated by Raman spectrum and curve-fitting analysis. They show that the thermal conversion product of TS-2 has a better graphite crystallite structure than TS-1.
Recently developed crosslinked TR (XTR) membranes as an advanced TR material exhibit high permeability and high selectivity stemming from higher rigidity due to a simultaneous and synergetic reaction of crosslinking and thermal rearrangement. The precursor crosslinkable co-HPI precursor can be dissolved in a wide range of commercial solvents indicative of an excellent processibility. Herein, a systematic spinning process, using a newly designed crosslinkable co-HPI precursor to fabricate defect-free XTR-PBOI hollow fiber membranes with inner skin layer will be discussed based on the phase inversion kinetics of nonsolvent-induced phase separation (NIPS) method.
Dehydration is the one of the simplest ways to improve the shelf-life of fruits and vegetables by reducing the moisture content. Dehydration operations are important steps in food processing industry, which involves a process of moisture removal due to simultaneous heat and mass transfer. Drying provides a longer shelf-life to the food, cheaper transportation cost, and smaller space demand during storage. Hot-air drying of hamcho pieces were carried out to compare the influence of blanching at 90℃ for 5 min as a pre-treatment on the drying kinetics at temperatures of 50℃, 60℃, and 80℃ at a constant airflow velocity of 0.66 m/s. The pretreatment had significant effects on the moisture content of the hamcho samples. In all the drying temperature selected, the blanched samples had shorter drying time than the control. Based on these comparisons it is seen that blanching treatment prior to drying could improve the drying kinetics of hamcho samples at all drying temperatures. The activation energy was calculated by plotting the natural logarithm of drying rate constant (k) versus the reciprocal of the absolute temperature. It turned out to be 36.90 and 30.76 kJ/mol for the control and blanched sample, respectively.
지구 온난화, 석유고갈, 환경오염에 대한 해결 방안으로 수송부분에서 국제적으로 바이오연 료에 관한 연구가 활발하게 이루어지고 있다. 그 중 바이오디젤은 석유계 디젤과 비교해 이산화탄소 및 대기오염 물질 배출이 적고 세탄가가 높은 장점을 가지고 있다. 현재 국내 바이오디젤 수요는 지속적으로 증가하고 있으나 원료부족으로 인해 수입의존도가 커지고 있는 상황이다. 이러한 문제를 해결하기 위해 본 연구는 현재 사용되지 않는 음폐유(약 33 % 유리지방 산 함유)를 Amberlyst-15 촉매가 이용한 에스테르화 반응을 통해 바이오디젤 원료로서 활용가능성을 확인 하였다. 다양한 반응 조건의 영향을 조사하기 위한 실험을 수행한 결과 반응온도 383 K에서 97.62 %의 전환 율을 얻었으며, 반응속도는 353 K에서 373 K로 증가 할 때 최대 1.99 배까지 상승하였다. 또한 동역학 적 결과를 이용하여 29.75 kJ/mol의 활성화 에너지를 확인하여 선행연구에서 연구된 타 고체촉매에 비 해 에스테르화반응에 Amberlyst-15 더 적합함을 확인하였다. 그리고 메탄올 몰 비가 증가함에 따라 최 대 91.43 %의 반응 전환율을 확인하였고, 촉매량 영향의 경우 0 wt%에서 20 wt%까지 증가시킨 결과 반응 전환율이 43.78 %에서 94.62 %까지, 초기 반응 속도는 1.1∼1.4 배로 상승하는 것을 확인하였 다. 교반속도의 경우 100∼900 rpm의 조건에 따라 실험을 수행하였으나 반응 전환율에는 큰 영향을 주 지 않음을 확인하였고 반응 시간에 따른 영향의 경우 240 분 까지 산가 감소를 보이다가 300 분이 지 나면서부터 산가가 상승하는 결과를 가져왔다. 그리고 위 실험들을 통해 도출된 최적 조건을 적용하여 음폐유 에스테르화 반응에 적용하였고 그 결과 반응시간 60 분에서 음폐유와 모사 폐유지간의 13 %의 반응 전환율 차이를 보였으나 최종 240 분 반응 전환율은 모사 폐유지 98.12 %, 음폐유는 97.62 %로 거의 유사한 결과를 얻었다.