검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 220

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Modification of the surface of raw activated carbon using chemical solvents can significantly improve the adsorption performance of activated carbon. Triethylenetetramine is one of the most important chemical solvents used to modify raw activated carbon for formaldehyde removal indoor. We conducted the liquid impregnation experiments at different initial concentrations, temperatures, adsorbent dosage and time ranges to fully investigate the adsorption of triethylenetetramine on the surface of raw activated carbon for modification. We found that the Langmuir isotherm model and pseudo-first-order kinetic model fit quite well with the experimental data and the R2 are 0.9883 and 0.9954, respectively. The theoretical maximum adsorption capacity is 166.67 mg/g. The change in Gibbs free energy (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0) were also calculated to study the direction and driving force of the liquid adsorption process. In order to understand the adsorption process at the molecular level, a new activated carbon model based on the actual physical and chemical properties of activated carbon was carefully established in the Materials Studio to simulate the liquid-phase adsorption. The pore structure, elemental composition, functional group content, density, pore volume, and porosity of the activated carbon model converge close to the actual activated carbon and the adsorption isotherms obtained from the simulation agree well with the experimental results. The results show that the adsorption of triethylenetetramine on activated carbon is a spontaneous, endothermic and monolayer physical adsorption process.
        4,800원
        2.
        2023.11 구독 인증기관·개인회원 무료
        Chelating agents in low and intermediate radioactive wastes can form complexes with radionuclides and increase the mobility of the radionuclides. According to the Korea Radioactive Waste Agency (Acceptance criteria for low and intermediate radioactive waste, WAC-SIL-2022-1), if the amount of residual chelating agents in the waste are greater than 0.1%, the chemical names and residual amounts should be specified; if greater than 1%, the waste must be solidified and contain no more than 8%. The existing method for analyzing chelates in radioactive waste was based on UV–Visible spectrophotometry (UV-Vis), but the new method is based on liquid chromatography/mass spectrometry (LC-MS). The analysis was performed in aqueous solution before applying to real samples. Since the real sample may contain several heavy metals, it is expected that the chelates will exist as complexes. Therefore, 1.0×10-4 mol L-1 of EDTA (Ethylenediaminetetraacetic acid), DTPA (Diethylenetriaminepentaacetic acid), NTA (Nitrilotriacetic acid), and excess metals in aqueous solution were analyzed using HPLC using RP (Reverse Phase) column and HILIC (Hydrophilic interaction) column. When the RP column was used, each substance eluted without separation at the beginning of the analysis. However, when analyzed using a HILIC column, the peaks of each substance were separated. LC-MS measurements using HILIC conditions resulted in separations with better sensitivity.
        3.
        2023.11 구독 인증기관·개인회원 무료
        According to the analysis of the Korean Radioactive Waste Society, saturation of nuclear power plant temporary storage is expected sequentially from 2031, and accordingly, the need for highlevel radioactive waste disposal facilities has emerged. In order to establish a repository for high-level radioactive waste, the performance and safety analysis of the repository must be conducted in compliance with regulatory requirements. For safety analysis, it needs a collection of arguments and evidence. and IAEA defined it as ‘Safety case’. The Systematic method, which derives scenarios by systematizing and combining possible phenomena around the repository, is widely used for developing Safety case. Systematic methods make use of the concept of Features, Events and Processes (FEP). FEP identifies features that affect repository performance, events that can affect a short period of time, and processes that can have an impact over a long period of time. Many countries, such as Finland, Sweden, Japan, United States, etc., are in process of licensing disposal facilities by using ‘Safety case’. And they then develop their own project-specified FEP lists and employ them for performing safety assessments. However, the systematic procedure for generating scenarios for safety evaluation is not clearly defined. According to the International Atomic Energy Agency (IAEA) Safety Standards Series (SSG- 23), the bottom-up method is an approach for conducting safety analysis using Features, Events, and Processes (FEPs). However, the process of how each FEP is utilized to establish a scenario for safety evaluation remains unclear. Additionally, there exists not only a bottom-up approach for generating scenarios using FEPs, but also a hybrid scenario development method that incorporates a top-down approach based on safety functions. Each country address scenario derivation in accordance with the adopted hybrid method. Nevertheless, a challenge arises in its application due to discrepancies between their approach and the hybrid approach specific which we are going on. Hence, this study introduces the FEP integration methodology for generating scenarios based on the hybrid scenario development method using the FEP list.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Raman characteristics of various minerals constituting natural rocks collected from uranium deposits in Okcheon metamorphic zone in Korea are presented. Micro-Raman spectra were measured using a confocal Raman microscope (Renishaw in Via Basis). The focal length of the spectrometer was 250 mm, and a 1800 lines/mm grating was installed. The outlet of the spectrometer was equipped with a CCD (1,024256 pixel) operating at -70°C. Three objective lenses were installed, and each magnification was 10, 50, and 100 times. The diameter of the laser beam passing through the objective lens and incident on the sample surface was approximately 2 m. The laser beam power at 532 nm was 1.6 mW on the sample surface. Raman signal scattered backward from the sample surface was transmitted to the spectrometer through the same objective lens. To accurately determine the Raman peak position of the sample, a Raman peak at 520.5 cm-1 measured on a silicon wafer was used as a reference position. Since quartz, calcite, and muscovite minerals are widely distributed throughout the rock, it is easy to observe with an optical microscope, so there is no difficulty in measuring the Raman spectrum. However, it is difficult to identify the uraninite scattered in micrometer sizes only with a Raman microscope. In this case, the location of uraninite was first confirmed using SEM-EDS, and then the sample was transferred to the Raman microscope to measure the Raman spectrum. In particular, a qualitative analysis of the oxidation and lattice conditions of natural uraninite was attempted by comparing the Raman properties of a micrometer-sized natural uraninite and a laboratory-synthesized UO2 pellet. Significantly different T2g/2LO Raman intensity ratio was observed in the two samples, which indicates that there are defects in the lattice structure of natural uraninite. In addition, no uranyl mineral phases were observed due to the deterioration of natural uraninite. This result suggests that the uranium deposit is maintained in a reduced state. Rutile is also scattered in micrometer-sizes, similar to uraninite. The Raman spectrum of rutile is similar in shape to that of uraninite, making them confused. The Raman spectral differences between these two minerals were compared in detail.
        8.
        2023.07 구독 인증기관·개인회원 무료
        Green product experience has become an important marketing strategy for corporations to tap potential green consumers. Based on the theory of planned behavior, this article explores the influence of attitude, subjective norm, and perceived behavioral control on consumers’ green purchasing intentions from the perspective of green product experience with consumers in China, Japan, and Korea as the research objects. Our findings suggest that green product experience of consumers in the three countries can directly affect consumers' green purchasing intentions. Green product experience has an indirect influence on consumers’ green purchasing intention through the mediating effect of attitude, subjective norm and perceived behavioral control. The multiple group comparison shows the external validity of TPB through an examination of green purchasing behavior in different cultural settings, which will help enterprises implement effective experience marketing strategies.
        9.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To understand antioxidant enzyme response of two contrasting Arundinella hirta ecotypes to drought stress, drought-tolerant Youngduk and drought-sensitive Jinju-1, were comparatively analyzed changes in the enzymatic activities of peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR). Two ecotypes, drought-tolerant Youngduk and drought-sensitive Jinju-1 were subjected to drought stress by withholding water for 12 days. ROS accumulation level and electrolytic leakage were significantly increased in both A. hirta ecotypes by drought stress treatment but less in Youngduk than Jinju-1. The RWC significantly decreased in both the drought stress-treated ecotypes as compared to control, but less in Youngduk than Jinju-1. Soluble sugar and protein content were increased more in drought stress-treated Youngduk as compared to Jinju-1. The activities of antioxidant enzymes such as SOD, CAT, POD, APX, and GR increased significantly in both the drought stress-treated ecotypes Youngduk and Jinju-1 as compared to control. The increase in antioxidant enzyme activity level was more prominent in drought stress-treated Youngduk as compared to Jinju-1. Taken together, these results suggest that Youngduk was more tolerant to drought stress than Jinju-1, and seem to indicate that tolerance of A. hirta to drought stress is associated with increased activity of antioxidant enzymes.
        4,000원
        10.
        2023.05 구독 인증기관·개인회원 무료
        The bioreduction process from soluble U(VI) to insoluble U(IV) has been extensively studied in the field of radionuclides migration. Since acetic acid (AcOH) is widely used as an electron donor for bioreduction of U(VI), it is necessary to understand the effect of U(VI)-AcOH complexes that exist in different species depending on pH on this process. Changes in samples before and after bioreduction can be compared using time-resolved laser luminescence spectroscopy (TRLLS), which measures the characteristic luminescence spectra of different U(VI) species. Although luminescence properties of U(VI)-AcOH species were reported, experiments were conducted under conditions below pH 4.5. In this study, spectrophotometry and TRLLS for U(VI)-AcOH species (10−100 μM U(VI) and 20 mM AcOH) were performed in pH ranges extending to neutral and alkaline pH regions similar to groundwater conditions as well as acidic pH region. Two different complexes (UO2(AcO)+, UO2(AcO)2 with U(VI) and acetate ratios of 1:1, 1:2) were observed in the acidic pH region. The 1:1 complex, which appears as the pH increases, has no luminescence properties, but its presence can be confirmed because it serves to reduce the luminescence intensity of UO2 2+. In contrast, the 1:2 complex exhibits distinct luminescence properties that distinguish it from UO2 2+. The 1:3 complex (UO2(AcO)3 -) expected to appear with increasing pH was not observed. Two different complexes ((UO2)3(OH)5 +, (UO2)3(OH)7 - with U(VI) and OH ratios of 3:5, 3:7) were observed as the major species in the neutral pH region, but their luminescence lifetimes are remarkably short compared those in the absence of AcOH. Solid U(VI) particles were observed in the alkaline pH region, and they also had completely different luminescence properties from the aforementioned U(VI)-AcOH and U(VI)-hydrolysis species. Based on these results, the effect of pH in the presence of AcOH on the bioreduction process from U(VI) to U(IV) will be discussed.
        11.
        2023.05 구독 인증기관·개인회원 무료
        The phosphate industry is classified by IAEA as one of the Naturally Occurring Radioactive Materials (NORM) industry sectors most likely to require regulatory consideration. The production of phosphorous fertilizers constitutes the major activity in the industry, which can give rise to exposures of workers and the public through the handling and usage of phosphate rock and residues associated with processing. During the production process, when phosphate rock is digested with acid to produce phosphoric acid, some radionuclides, particularly Radium, become concentrated in residues, such as the scale that tends to form inside pipes and vessels. The registered radioactivity of phosphate rock in South Korea is less than 1.7 Bq/g for U-238, but according to the IAEA SRS No. 49, the radioactivity of phosphate scale can be up to 1,000 times higher than the raw mineral. Therefore, this study evaluated the potential for worker exposure during maintenance related to the removal of scales at a fertilizer manufacturing facility producing phosphoric acid in Korea.
        12.
        2023.05 구독 인증기관·개인회원 무료
        In Korea, borated stainless steel (BSS) is used as a storage rack in spent fuel pools (SFP) to maintain the nuclear criticality of spent fuels. As the number of nuclear power plants and the corresponding amount of spent fuels increased, the density in SFP storage rack also increased. In this regard, maintaining subcriticality of spent nuclear fuels became an issue and BSS was selected as the structural material and neutron absorber for high density storage rack. Since it is difficult to replace the storage rack, corrosion resistance and neutron absorbency are required for long period. BSS is based on stainless steel 304 and is specified in the ASTM A887-89 standard depending on the boron concentration from 304B (0.20-0.29% B) to 304B7 (1.75-2.25% B). Due to the low solubility of boron in austenitic stainless steel, metallic borides such as (Fe, Cr) 2B are formed as a secondary phase. Metallic borides could cause Cr depletion near it, which could decrease the corrosion resistance of the material. In this paper, the long-term corrosion behavior of BSS and its oxide microstructures are investigated through accelerated corrosion experiment in simulated SFP conditions. Because the corrosion rate of austenitic stainless steel is known to be dependent on the Arrhenius equation, a function of temperature, the corrosion experiment is conducted by increasing the experimental temperature. Detail microstructural analysis is conducted using a scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. After oxidation, a hematite structure oxide film is formed, and pitting corrosion occurs on the surface of specimens. Most of the pitting corrosion is found at the substrate surface because the corrosion resistance of the substrate, which has low Cr content, is relatively low. Also, the oxidation reaction of B in the secondary phase has the lowest Gibbs free energy compared to other elements. Furthermore, oxidation of Cr has low Gibbs free energy, which means that oxidation of B and Cr could be faster than other elements. Thus, the long-term corrosion might affect the boron content and the neutron absorption ability of the material. Using boron’s high cross-section for neutrons, the neutron absorption performance of BSS was evaluated through neutron transmission tests. The effect of the corrosion behavior of BSS on its neutron absorption performance was investigated. Samples simulated to undergo up to 60 years of degradation before corrosion through accelerated corrosion testing did not show significant changes in the neutron shielding ability before and after corrosion. This can be explained in relation to the corrosion behavior of BSS. Boron was only leached out from the secondary phase exposed on the surface, and this oxidized secondary phase corresponds to about 0.17% of the volume of the total secondary phase. This can be seen as a very small proportion compared to the total boron content and is not expected to have a significant impact on neutron absorption performance.
        14.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We explore the latitudinal distribution of sunspots and pursue to establish a correlation between the statistical parameters of the latitudinal distribution of sunspots and characteristics of solar activity. For this purpose, we have statistically analyzed the daily sunspot areas and latitudes observed from May in 1874 to September in 2016. As results, we confirm that the maximum of the monthly averaged International Sunspot Number (ISN) strongly correlates with the mean number of sunspots per day, while the maximum ISN strongly anti-correlates with the number of spotless days. We find that both the maximum ISN and the mean number of sunspots per day strongly correlate with the the average latitude, the standard deviation, the skewness of the the latitudinal distribution of sunspots, while they appears to marginally correlate with the kurtosis. It is also found that the northern and southern hemispheres seem to show a correlated behavior in a different way when sunspots appearing in the northern and southern hemispheres are examined separately.
        4,000원
        15.
        2022.10 구독 인증기관·개인회원 무료
        Nuclear spent fuel (SNF) disposal in deep geological repositories is considered as one of sound options for the long-term and safe sequestration of radiotoxic SNF and the sustainable use of nuclear energy. The chemical behaviors of various radionuclides originated from SNF should be well understood to evaluate the migrational behaviors of radionuclides and their reactions and interactions with various geochemical components. Formation of secondary minerals, colloids, other insoluble precipitates is of interest since the concentrations of radionuclides in groundwaters can be limited by the solubility of those solid phases. Particularly when evaluating their solubility, the use of well-defined solid materials in terms of chemical composition and molecular structure is crucial to obtain reliable measurement results. In this study, a synthetic calcium uranyl silicate (Ca-U(VI)-silicate, or uranophane) was prepared and characterized by using various analytical methods including powder X-ray diffraction (pXRD), scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), and vibrational (FTIR and Raman) spectroscopies. Uranyl silicate minerals are significant to the disposal of nuclear wastes. Our simulation demonstrates that uranophane (Ca[UO2SiO3OH]2·5H2O), one having a U:Si ratio of 1:1, can be a mineral species limiting U(VI) solubility under groundwater conditions in Korea. For the preparation of Ca-U(VI)-silicate, we applied a two-step hydrothermal synthetic procedure reported in literature with modification. Briefly, we conclude that the obtained mineral phase is the ‘α-uranophane’; our characterization results show that the structural and spectroscopic properties of the synthetic Ca-U(VI)-silicate agree well with those of α-uranophane. For instance, the pXRD patterns obtained from the solid show nearly identical diffraction peak positions with those from the reference XRD pattern. From IR and Raman spectroscopy it is noticed that the stretching modes of UO2 2+ and SiO4 4- ions result in strong absorption bands in a region of 700 ~ 1,100 cm-1. Elemental compositions of the synthetic solids were also estimated by using EDX analysis, which results in a Ca:U:Si ratio close to 1:2:2 on average. However, we found that it is difficult to obtain good crystallinity of uranophane, which can be observable by using SEM and its image analysis. We believe that this work serves as a model study to provide synthetic routes of radionuclide-related mineral phases and applicable solid phase characterization methods. In the presentation, the potential use of the U(VI)-silicate solid phase for the upcoming groundwater solubility measurements will be discussed. Keywords: Hexavalent Uranium, Silicate
        16.
        2022.10 구독 인증기관·개인회원 무료
        Kr-85 has a half-life of 10.7 years and it stays in the atmosphere for a long time. However it does not accumulate as an noble gas but only emits beta particles. Therefore its contribution to environmental radiation dose is lower than any other radionuclides. Kr-85 is one of the main fission products produced by nuclear fission reaction and artificial radionuclide that does not exist in nature. For these reasons, monitoring Kr-85 from the atmosphere is meaningful so that the nuclear-related facilities are recommended to control and regulate environmental emissions. Post Irradiation Examination Facility (PIEF) which located in KAERI is a facility that conducts various material and chemical experiments using the irradiated nuclear fuels. Therefore, various radionuclides can present in gaseous effluent including Kr-85. To prevent the environmental hazards and guarantee the radiation safety of the public, nuclear facilities are recommended to be equipped with stack radiation/radioactivity monitoring system, so that the Kr-85 concentration in gaseous effluent is controlled within the regulatory criteria. Particularly, the Kr-85 concentration of gaseous effluent is commonly monitored by the stack monitoring system connected to the process ventilation system from the hot cell. The monitoring system supply the information such as beta count rate, dose rate and flow rate, etc. Due to the concentration of Kr-85 in gaseous effluent is subject to regulatory guide lines, a systemized procedure for calculating Kr-85 concentration of the stack exhaust is necessary. Furthermore, the emission should be monitored whether it satisfies the regulatory standard or does not. This paper performed discussion on the process of calculating the concentration of Kr-85 in the gaseous effluent of PIEF stack from the monitoring system (NGM209, MGP), and the amount of Kr- 85 over the last 2 years emissions was calculated. In addition to calculating effluent rate of radioactive Kr-85, the Minimum Detectable Concentration (MDC) and Decision Threshold (SD) were calculated. As a result, the calculated Kr-85 concentration was below the SD during the entire period. It is considered that there are no environmental emissions of Kr-85.
        17.
        2022.10 구독 인증기관·개인회원 무료
        Surface contaminants may attach to surfaces or objects in the radiation controlled area to cause radiation exposure, or spread out to the general environment by person and object exiting the radiation workplace. Accordingly, in radiological safety control, surface contamination monitoring is one of the important factors in workplace monitoring. When obtaining the measurement results for the monitoring, the results are accompanied by uncertainty since measurements contain numerous errors. Accordingly, the International Organization for Standardization (ISO) has published the ISO 7503 series which is comprehensive and detailed guidelines on the measurement and evaluation of surface contamination. ISO 7503-3 especially presents a mathematical model for the contamination measurement and provide calculation guidelines on measurement uncertainty evaluation, decision threshold and detection limit. This paper is focused on reevaluating and comparing the surface contamination monitoring method applied to radiation safety management practice and its results based on the measurement and evaluation method set by the International Organization for Standardization. The evaluation was performed in accordance with ISO 7503, and the current reporting method for measurement results was compared with the method recommended in ISO 11929 publication.
        18.
        2022.10 구독 인증기관·개인회원 무료
        In Korea, borated stainless steel (BSS) is used as spent fuel pool (SFP) storage rack to maintain nuclear criticality of spent fuels. As number of nuclear power plants and corresponding number of spent fuels increased, density in SFP storage rack also increased. In this regard, maintain subcriticality of spent nuclear fuels was raised as an issue and BSS was selected as structural material and neutron absorber for high density storage rack. Because it is difficult to replace storage rack, corrosion resistance and neutron absorbency are required for long period. BSS is based on stainless steel 304 and it is specified in the ASTM A887-89 standard depending on the boron concentration from 304B (0.20-0.29% B) to 304B7 (1.75-2.25% B). Due to low solubility of boron in austenitic stainless steel, metallic borides such as (Fe, Cr)2B are formed as secondary phase metallic borides could make Cr depletion near it which could decrease the corrosion resistance of material. In this paper, long-term corrosion behavior of BSS and its oxide microstructures are investigated through accelerated corrosion experiment in simulated SFP condition. Because corrosion rate of austenitic stainless steel is known to be dependent on the Arrhenius equation, a function of temperature, corrosion experiment is conducted by increasing the experimental temperature. Detail microstructural analysis was conducted with scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. After oxidation, hematite structure oxide film is formed and pitting corrosions occur on the surface of specimens. Most of pitting corrosions are found at the substrate surface because corrosion resistance of substrate, which has low Cr content, is relatively low. Also, oxidation reaction of B in the secondary phase has the lowest Gibbs free energy compared to other elements. Furthermore, oxidation of Cr has low Gibbs free energy which means that oxidation of B and Cr could be faster than other elements. Thus, the long-term corrosion might affect to boron content and the neutron absorption ability of the material.
        20.
        2022.09 구독 인증기관 무료, 개인회원 유료
        When we think about an idea of United Nations Tolerance Program UNTP, it is important for us to share memory with world citizens that we had 2314 veterans from 11 countries in the Busan U.N. Forces Cemetery since January of 1951. Recently, we had 13 veterans, who got buried coming from 4 Americans, 3 Hollanders, 2 Frenchmen, 2 Germans, 2 Englishmen, 1 Canadian and 1 headband after they died in their countries. (Joongang daily newspaper June 19, 2022). "I believe that creating a fifth office of the UNTP in Republic of Korea (Seoul, Busan, Kyunggi or Jeju Island), as a twin organization of the UNEP in Nairobi, Kenya, would provide a geopolitical balance to the international organization and a useful base for peace island studies in the conflict laden region of East Asia. Establishing this office in S. Korea(Seoul, Busan, Kyunggi or Jeju Island), with its unique geographical location as a hub for peace talks and environmental negotiations between Russia, North Korea, Japan, China, and Taiwan, would contribute to peace and development in the region." (Yates. 2022).
        3,000원
        1 2 3 4 5