플랜트 및 설비가 대규모, 정교화, 복잡화 될수록 이로 인한 고장 및 오류에 의한 피해가 막대하기 때문에, 시스템의 신뢰성, 보전성 및 안전성 향상과 제품 품질 향상을 추구 및 안전성 유지에 대한 관심이 고조되고 있다. 고장진단은 잠재적으로 노이즈를 가지고 있다고 생각되는 데이터의 해석에 근거하여 시스템의 고장을 찾는 일련의 체계적이고 통합된 방법이다. 그러나 대부분의 방법들이 이진 논리에 기초를 둔 추론으로 불확실성을 제대로 결과에 반영하지 못하고 있다. 본 논문에서는 예방정비의 관점에서 시스템에 내재된 다양한 불확실성을 효율적으로 처리하기 위해 전문가의 직관과 경험등을 기초로 하여 언어학적 변량을 취하고, 이를 퍼지 기법을 이용하여 정량화 함으로써 불확실성을 고려한 판단이 가능하게 하는 퍼지 전문가 시스템을 제안한다.