Extraction of Wheat Cultivation Area Using Multi-temporal Satellite Images and Correlation Analysis between Wheat Yield and Climate Data
This study examined the efficiency of satellite images in terms of detecting wheat cultivation areas, and then analyzed the possibility of climate change through an correlation analysis of time series climate data from the western regions of Gyeongnam province, Korea. Furthermore, we analyzed the effect of climate change on wheat production through a multiple regression analysis with the time series wheat production and climate data. A relatively accurate distribution was achieved on the wheat cultivation area extracted through satellite image classification with an error rate of less than 10% in comparison to the statistical data. Upon correlation analysis with time series climate data, significant results were displayed in the following changes: the monthly mean temperature of the seedling stage, the monthly mean duration of sunshine, the monthly mean temperature of the growing period, the monthly mean humidity, the monthly mean temperature of the ripening stage, and the monthly mean ground temperature. Accordingly, in the study area, the monthly mean temperature, precipitation, and ground temperature generally increased whereas the monthly mean duration of sunshine and humidity decreased. The monthly mean wind speed did not display a particular change. In the multiple regression analysis results, the greatest effect on the production and productivity of wheat as climate factors included the annual mean humidity of the seedling stage, the annual mean temperature of the wintering period, and the annual mean ground temperature of the ripening stage. These results demonstrate that there is a change in wheat production depending on the climate change in the study area. in addition, it is determined that this study will be used as important basic data in the resolution of food security problems based on climate change.