Metabolic Discrimination of Papaya (Carica papaya L.) Leaves Depending on Growth Temperature Using Multivariate Analysis of FT-IR Spectroscopy Data
본 연구는 FT-IR 스펙트럼 데이터를 기반으로 다변량통계분석을 이용하여 생육 온도변화에 따른 파파야(Carica papaya L.)의 대사체 수준 식별을 통해 기후 변화에 대응하여 작물의 육종 연구의 기초자료로 활용하고자 한다. 1. FT-IR 스펙트럼 데이터로부터 PCA(principal component analysis), PLS-DA(partial least square discriminant analysis) 그리고 HCA(hierarchical clustering analysis) 분석을 실시하였다. 2. 파파야 품종은 1700–1500, 1500–1300, 1100–950 cm-1부 위에서 대사체의 양적, 질적 패턴 변화가 FT-IR 스펙트럼상에 서 나타났다. FT-IR 스펙트럼의 1700–1500 cm-1부위는 주로 Amide I 과 II을 포함하는 아미노산 및 단백질계열의 화합물 들의 질적, 양적 정보를 나타내고, 1500–1300 cm-1부위는 phosphodiester group을 포함한 핵산 및 인지질의 정보가 반영이 되고, 1100–950 cm-1부위는 단당류나 복합 다당류를 포함 하는 carbohydrates 계열의 화합물들이 질적, 양적 정보가 반영되는 부위이다. 3. PCA score plot 상측으로부터 +0oC(A)에서 +4oC(C)로 변화하는 것을 볼 수 있다. (A) 그룹은 주로 현재 기온에서 재배되는 파파야가 분포되면서 그룹을 형성하고 있고, (B) 그 룹은 평년 기온에서 +2oC 증가한 것을 가정하여 재배된 파파야가 그룹을 형성하였다. 또한, (C) 그룹은 (B) 그룹에서 +2oC, 평년 기온에서 +4oC 증가한 것을 가정하여 재배된 파파야가 그룹을 형성하였다. 4. PLS-DA 분석의 경우 PCA 분석보다 생육온도에 따른 그룹 간 식별이 뚜렷하게 나타났다. 5. 본 연구에서 확립된 파파야 생육온도에 따른 대사체 수준 식별 기술은 파파야의 품종, 계통의 신속한 선발 수단으로 활용이 가능할 것으로 기대되며 육종을 통한 신품종개발 가속화에 기여할 수 있을 것으로 예상된다.
To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate papaya at metabolic level. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700–1,500, 1,500–1,300 and 1,100-950 cm-1, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins (1,700–1,500 cm-1), phosphodiester groups from nucleic acid and phospholipid (1,500– 1,300 cm-1) and carbohydrate compounds (1,100-950 cm-1). The result of PCA analysis showed that papaya leaves could be separated into clusters depending on different growth temperature. In this case, showed discrimination confirmed according to metabolite content of growth condition from papaya. And PLS-DA analysis also showed more clear discrimination pattern than PCA result. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful papaya cultivars.