PURPOSES : The purpose of this study is to measure and analyze the fugitive dust generated by each process through field tests to develop a technology to reduce fugitive dust generated during excavation-restoration work on road pavements.
METHODS : The testbed was constructed based on a typical excavation-restoration construction section and comprised five sections for reproducibility and repeated measurements. The excavation-restoration work was divided into pavement cutting, pavement crushing, pavement removal, excavation, and restoration processes and fugitive dust generated by each process was measured. Fugitive dust (TSP, PM10, PM2.5, and PM1) was measured using a GRIMM particle spectrometer, which applies the principle of a light scattering spectrometer and can be measured in real-time.
RESULTS : Analyses of the average mass concentration of PM10 generated by the excavation-restoration process are as follows: 1286.3 μg/m³ from pavement cutting, 246.8 μg/m³ from pavement crushing, 697.0 μg/m³ from pavement removal, 747.9 μg/m³ from excavation process, and 350.6 μg/m³ from the restoration process. In addition, the average particle size distribution of the excavationrestoration construction was in the order of PM10~PM2.5 (67 %), PM1 or less (24 %), and PM2.5~PM1 (9 %). The pavement cutting process is characterized by the emission of high concentrations of fugitive dust over a short time, compared to other processes. The pavement crushing process has the characteristic of steadily generating fugitive dust for a long period, although the emission concentration is small.
CONCLUSIONS : In this study, it was found that the concentration and characteristics of fugitive dust generated during road pavement excavation-restoration works vary by process and the reduction technology for each process should be developed accordingly.