PURPOSES : In this study, the basis for improving the maintenance method of road pavement in Jeju Island, where deterioration is accelerating, was presented through field construction and analysis of various combinations of maintenance methods. METHODS : Construction was performed on Jeju Island's Aejo Road, which has high traffic and frequent early damage, using various asphalt mixtures mainly applied in Jeju Island, with different maintenance cross-sections depending on the level of repair. The quality and performance of the asphalt mixture collected during construction were evaluated, and MEPDG was used to analyze the service life according to the type and maintenance level of the mixture. RESULTS : While the mixture for the surface layer satisfied the quality standards and had excellent rutting and moisture resistance performance, the asphalt mixture for the intermediate and base layer did not satisfy the quality standards such as air voids, so it was judged that quality control was necessary during production. The section repaired to the base layer was found to be advantageous for the integrated behavior of the pavement and had the best structural integrity. As a result of predicting the service life, the estimated life of the section where only the surface layer was repaired was analyzed to be approximately 7 years, the section where the intermediate layer was repaired was 14.5 years, and the section where the entire section up to the base layer was repaired was analyzed to be 18 years. CONCLUSIONS : In Jeju Island, where deterioration is accelerating, it was analyzed that when establishing a maintenance plan, it is necessary to consider repairing the middle and base floors in order to secure the designed life of 10 years.
PURPOSES : The purpose of this study is to provide basic data to improve the service life of asphalt pavement using basalt aggregate in Jeju Island by evaluating the performance of asphalt pavement through analysis of material and structural aspects. METHODS : To evaluate the performance of Jeju Island's asphalt pavement, cracks, permanent deformation, and longitudinal roughness were analyzed for the Aejo-ro road, which has high traffic and frequent premature damage. Cores were collected from Aejo-ro sections in good condition and damaged condition, and the physical properties of each layer were compared and analyzed. In addition, plate cores were collected from two sections with severe damage and the cause of pavement damage was analyzed in detail. RESULTS : About 45% of the collected cores suffered damage such as layer separation and damage to the lower layer. The asphalt content of surface layer in the damaged section was found to be 1.1% lower on average than that in the good condition section, and the mix gradations generally satisfied the standards. The density difference between the cores of each layer was found to be quite large, and the air voids was found to be at a high level. CONCLUSIONS : Test results on the cores showed that, considering the high absorption ratio of basalt aggregate, the asphalt content was generally low, and the high air voids of the pavement was believed to have had a significant impact on damage. High air voids in asphalt pavement can be caused by poor mixture itself, poor construction management, or a combination of the two factors. Additionally, the separation of each layer is believed to be the cause of premature failure of asphalt pavement.
본 연구는 간호대학생의 월경곤란증 및 스트레스가 수면의 질에 미치는 영향을 파악하기 위한 조사연구이다. 연구 대상자는 간호대학 학생 248명을 대상으로 하였고, 자료수집은 2021년 4월 20일부터 5월 18일까지 수행하였다. 자료분석은 SPSS/WIN 24.0을 이용하여 기술통계, 상관관계 및 다중회귀분석을 사용하였다. 연구결과, 간호대학생의 수면의 질은 월경곤란증(r=.20, p<.001)및 스트레스(r=.24, p<.001)와 유의한 정적 상관관계를 보였다. 간호대학생의 수면의 질에 가장 영향력이 있는 요인은 학년(β=.20, p<.001), 스트레스(β=.19, p=.004), 월경곤란증(β=.15, p=.014)으로 나타났으며 모형의 설명력은 13.4% 이었다. 이에 간호대학생의 수면의 질을 향상시키기 위해서 학년에 따른 스트레스 관리 및 월경곤란증에 대한 평가와 정보제공이 포함된 수면 관련 교육 개발을 제안하는 바이다.
PURPOSES : The purpose of this study is to measure and analyze the fugitive dust generated by each process through field tests to develop a technology to reduce fugitive dust generated during excavation-restoration work on road pavements.
METHODS : The testbed was constructed based on a typical excavation-restoration construction section and comprised five sections for reproducibility and repeated measurements. The excavation-restoration work was divided into pavement cutting, pavement crushing, pavement removal, excavation, and restoration processes and fugitive dust generated by each process was measured. Fugitive dust (TSP, PM10, PM2.5, and PM1) was measured using a GRIMM particle spectrometer, which applies the principle of a light scattering spectrometer and can be measured in real-time.
RESULTS : Analyses of the average mass concentration of PM10 generated by the excavation-restoration process are as follows: 1286.3 μg/m³ from pavement cutting, 246.8 μg/m³ from pavement crushing, 697.0 μg/m³ from pavement removal, 747.9 μg/m³ from excavation process, and 350.6 μg/m³ from the restoration process. In addition, the average particle size distribution of the excavationrestoration construction was in the order of PM10~PM2.5 (67 %), PM1 or less (24 %), and PM2.5~PM1 (9 %). The pavement cutting process is characterized by the emission of high concentrations of fugitive dust over a short time, compared to other processes. The pavement crushing process has the characteristic of steadily generating fugitive dust for a long period, although the emission concentration is small.
CONCLUSIONS : In this study, it was found that the concentration and characteristics of fugitive dust generated during road pavement excavation-restoration works vary by process and the reduction technology for each process should be developed accordingly.
PURPOSES: The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications.
METHODS: According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application.
RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.